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Abstract:

Background:

Phenolic Mannich bases derived from hydroxychalcones show remarkable cytotoxic potencies towards cancer cell  lines.  However,  the exact
mechanism of action is still partially uncleared.

Objective:

Interaction of two hydroxychalcones and their Mannich derivatives with calf thymus DNA (ctDNA) has been investigated.

Methods:

Thin-layer chromatography and UV-Vis spectroscopic method were used for studying the interaction. The binding constant has been determined
by UV-Vis spectrophotometric titration. The DNA cleavage activity of the compounds was studied by agarose gel electrophoresis.

Results:

Interaction of the compounds with ctDNA exhibited relatively high intrinsic binding constant (4-5x104 M-1). The results indicate existence of weak,
non-covalent  interactions  between  the  investigated  derivatives  with  ctDNA.  Some  compounds  showed  a  slight  DNA  cleavage  activity  with
pBR322.

Conclusion:

The obtained results provide additional knowledge on the previously documented cytotoxicity against tumor cell lines of the hydroxychalcones and
their Mannich-derivatives.
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1. INTRODUCTION

Chalcones  (1,3-diphenyl-prop-2-en-1-ones),  are  inter-
mediary  compounds  of  the  biosynthetic  pathway  of  a  very
large  and  widespread  group  of  plant  constituents,  known
collectively as flavonoids [1]. Among the naturally occurring
chalcones  and  their  synthetic  analogs,  several  compounds
displayed cytotoxic, antitumor, anti-inflammatory, and chemo-
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preventive  properties,  which  are  well  documented  in  the
literature  [1  -  7].

It  was  concluded  that  biological  activity,  including  the
cytotoxic effect of chalcones and their some cyclic derivatives,
might  be partially  a  consequence of  non-covalent  interaction
between the compounds and cellular macromolecules (proteins,
DNA) [8 - 11]. Since DNA is an important cellular receptor,
many  compounds  exert  their  tumor  cytotoxic  effect  through
binding to DNA, thereby influencing the cell-cycle, changing
its  replication,  inhibiting  cell  growth,  blocking  the  division,
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and  resulting  in  apoptosis  or  cell  death.  There  are  primarily
three  different  ways  by  which  anticancer  drugs  interact  with
DNA:  (a)  through  control  of  transcription  factors  and  poly-
merases,  (b)  through  RNA  binding  to  DNA  double  helix  to
form nucleic acid triple helix structures and (c) through binding
of  small  molecules  to  DNA  double-helical  structures  [12].
Small  molecules  can  react  with  DNA  via  covalent  and  non-
covalent binding, with interest generally focusing on the latter.
The non-covalent binding of small molecules to DNA involves
binding on the outside of the helix (external binding) through
electrostatic interaction, intercalation between base pairs, and
binding in the minor or major DNA grooves [13 - 15].

Mannich bases are beta-aminoketones, which are generated
from various substrates through the introduction of an amino-
methyl  function  utilizing  the  Mannich  reaction.  Amino-
alkylation  can  change  lipophilicity  of  a  drug  leading  to  an
improved delivery in the human body [16].  The solubility of
the  Mannich  bases  could  be  further  increased  as  a  result  of
their protonation to form the respective ammonium salt [17].
Mannich  bases  are  an  important  group  of  compounds  in
medicinal chemistry;  they display a wide range of biological
activities [18]. It was shown that the most effective compounds
against tumor cells are Mannich derivatives of acetophenones
and  structurally  related  α,β-unsaturated  ketones,  which  exert
their cytotoxic action through the alkylation of cellular thiols
such as glutathione or cysteine [18, 19].

Investigation  of  Mannich  derivatives  of  chalcones  has
received much attention in recent years. Several Mannich bases
derived  from  hydroxychalcones  show  remarkable  cytotoxic
potencies  towards  cancer  cell  lines  [20  -  25].  The  studies
showed that the 4-hydroxy group in the A ring and heterocyclic
rings in the B ring contribute to the bioactivity of the Mannich
bases  [25].  Some  Mannich  derivatives  of  chalcones  present
potent  anti-inflammatory  and  antioxidant  activities  [26].
Mannich bases of heterocyclic chalcones inhibited nitric oxide

production in lipopolysaccharide- and interferon-γ-stimulated
RAW 264.7 macrophages [27]. Mannich bases derivatives of
flawokawain  B  display  potent  activities  against  the  acetyl-
cholinesterase  enzyme  [28,  29].  A  novel  Mannich  base
derivative  might  be  a  potential  multifunctional  agent  for  the
treatment  of  Alzheimer's  disease and offered a  starting point
for  the  design  of  new  multitarget  AChE/MAO-B  inhibitors
based on the chalcone scaffold [30].

Previous  investigations  showed  4-chloro-4'-hydroxychal-
cone  (Fig.  1  (2A))  as  a  potent  inhibitor  (IC50  of  3.8  μM)  of
MDA-MB-231  (estrogen  receptor-negative)  cells,  commonly
used to model late-stage breast cancer [31]. Further, the GSH
activity of the compound was considered to play a role in the
mechanism of  action  of  the  molecule.  However,  it  is  proved
that  the  Mannich  derivative  of  the  compound  (Fig.  1  (2B))
showed higher spontaneous GSH reactivity than the parent 4'-
hydoxychalcone (2A) [32].

As  a  continuation  of  the  previous  works  [32],  here  we
report  on  synthesis  and  DNA  binding  properties  of  two  4'-
hydroxychalcones (1A and 2A) and their Mannich derivatives
(Fig.  1  (1B  and  2B)).  The  selection  was  made  based  on  the
previous  results  of  2A,  showing  promising  antiproliferative
activity against estrogen receptor-negative MDA-MB-231 cells
[31]. Furthermore, 4-alkoxychalcones have proven to be potent
antiproliferative chalcone derivatives [1 - 6]. For better under-
standing the molecular mechanism of cytotoxic effects of 4'-
hydroxychalcones and their Mannich analogs, here, we report
results  of  thin-layer  chromatographic and UV-Vis studies  on
the interaction of two 4'-hydroxychalcones (1A, 2A) and their
Mannich derivatives (Fig. 1 (1B, 2B)) with calf thymus DNA
(ctDNA). The effect of DNA-binder phenolic anticancer drugs
can be associated with their DNS-cleavage activity [15]. Based
on these previous observations, the DNA cleavage capacity of
the compounds was also investigated.

Fig. (1). Structure of investigated 4'-hydroxychalcones (1A, 2A) and their Mannich derivatives (1B, 2B).
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2. MATERIALS AND METHODS

2.1. Materials

All chemicals used were of the analytical grade available
and, if otherwise not specified, purchased from Sigma-Aldrich
Hungary (Budapest, Hungary).

Infrared (I.R.) spectra were performed on a Bruker IFS-55
FT spectrometer (Bruker Optik GmbH, Leipzig, Germany). 1H
and 13C NMR spectra  were  recorded on a  Bruker  Avance III
500  (500.15/125.77  MHz  for  1H/13C)  spectrometer  (Bruker
Optik  GmbH,  Ettlingen,  Germany).  The  melting  points  were
measured  on  a  Barnstead  Electrothermal  9100  melting  point
apparatus  (San  Francisco,  USA).  The  mass  spectrometry
analyses  were  carried  out  in  Q-Tof  III  micro  from  Bruker
Daltonics  equipment  (Bruker  Optik  GmbH,  Ettlingen,
Germany).

2.2. Synthesis of Compounds

4'-Hydroxychalcones  1A  and  2A,  as  well  as  their  bis
Mannich derivatives 1B and 2B (Fig. 1), were synthesized in
the  Institute  of  Chemistry,  Federal  University  of  Goiás,
Goiânia-GO,  Brazil.

Hydroxychalcone 1A was synthesized by Claisen-Schmidt
condensation,  as  previously  described  by  Kumar  et  al.  [33],
with  slight  modifications.  Equimolar  amounts  of  4-hydro-
xyacetophenone  (10  mmol)  and  4-ethoxybenzaldehyde  (10
mmol)  were  added  to  15  mL  of  40%  NaOH  methanolic
solution.  The  reaction  mixture  was  stirred  at  64  ºC  for  12  h
when Thin-Layer Chromatography (TLC) indicated completion
of  the  reaction.  Then,  cold  water  (5  mL)  was  added  to  the
media  and  acidified  with  10%  hydrochloric  acid  until  pH  3.
The resulting yellow solid was crystallized from methanol to
obtain the expected chalcone 1A in 75% yield. The structure of
compound  1A  was  confirmed  based  on  the  melting  point
measurement and spectroscopic methods by comparison with
literature data [33, 34].

(2E)-1-(4-hydroxyphenyl)-3-(4-ethoxyphenyl)prop-2-en-1-
one  (1A):  yield.:  75%;  m.p.:  187-190  ºC;  IR  (KBr)  λ/cm-1
3420  (OH-Ar),  1610  (C=O),  1603  (Ar-CO-C=C-Ar),  1573
(OCH2CH3), 1347 (OCH2CH3); 

1H NMR (500 MHz, DMSO-d6)
δ 8.05 (d, 2H, J 8.91), 7.80 (d, 2H, J 8.69) 7.75 (d, 1H, J 15.48,
Hβ), 7.65 (d, 1H, J 15.48, Hα), 6.99 (d, 2H, J 8.69), 6.89 (d,
2H, J 8.91), 4.10 (q, 2H, J 6.99, OCH2CH3), 1.35 (t, 3H, J 6.99,
OCH2CH3);

13C NMR (126 MHz, DMSO-d6) δ 187.53 (C=O),
162.45, 160.89, 143.16 (Cβ), 131.47, 129.84, 127.86, 120.00
(Cα),  115.78,  115.24,  63.78  (OCH2CH3),  15.02  (OCH2CH3).
IR, 1H NMR and 13C NMR spectra of the compound are shown
in Figs. (1S-4S).

The  bis  Mannich  chalcone  1B  was  synthesized  from the
corresponding  hydroxychalcone  1A  for  the  first  time  by
following the classical conditions of the Mannich reaction for
phenolic  compounds  [35].  First,  morpholine  (2.4  mmol)  in
ethanol  (15 mL) was heated under  reflux with  formaldehyde
(3.0 mmol) for 2 h. Then, hydroxychalcone 1A (1.2 mmol) and
few drops of 37% hydrochloric acid (0.15 mL) were added to
the  reaction  medium  and  stirred  for  96  h.  The  solution  was
concentrated, followed by the addition of a hydrogen chloride

solution  in  dry  diethyl  ether  to  form  the  corresponding
hydrochloride  salt.

(2E)-1-[4-hydroxy-3,5-bis[(morfolin-4-ylmethyl)  phenyl
]-3-(4-ethoxyphenyl)prop-2-en-1-one  hydrated  (1B):  yield.:
39%; m.p.: 205-209 ºC; IR (KBr) λ/cm-1 3120 (O-H), 2973 (N-
H),  1647  (C=O),  1600  (Ar-CO-C=C-Ar),  1250  (OCH2CH3),
1045 (OCH2CH3);  

1H NMR (500 MHz, DMSO-d6)  δ  8.53 (s,
2H), 8.04 (d, 1H, J 15.72, Hβ), 7.92 (d, 2H, J 8.65), 7.72 (d,
1H, J 15.72, Hα), 6.99 (d,  2H, J 8.65),  4.55 (s,  4H), 4,10 (q,
2H,  OCH2CH3),  3.90  (m,  8H),  3.28  (m,  8H),  1,35  (t,  3H,
OCH2CH3); 

13C NMR (126 MHz, DMSO-d6) δ 192.40 (C=O),
166.08, 148.92, 141.46 (Cβ), 136.44, 136.36, 135.14, 132.72,
125.05, 123.27 (Cα), 120.19, 68.78, 68.63 (OCH2CH3), 59.37,
56.17,  19.98  (OCH2CH3).  HRMS:  calculated  for  C27H34N2O5

[MH+]: 466.2540, measured 466.2607. IR, 1H NMR, 13C NMR,
and  HRMS  spectra  of  the  compound  are  shown  in  Figs.
(5S-9S).

Synthesis  and  structural  characterization  of  investigated
chalcone 2A and derivative 2B have been previously described
[32]. Their purity of each investigated sample was checked by
TLC.

2.3.  Investigation  of  DNA  Binding  by  Thin-layer
Chromatography (TLC)

Thin-layer  chromatographic  investigations  of  the  DNA
binding  affinity  of  the  compounds  were  performed  using
silanized  (reversed-phase;  R.P.)  silica  gel  60F254  (0.25  mm)
plates (Merck, Germany, No. 5747). The TLC plates were pre-
developed with methanol/50 mM sodium hydrogen phosphate
(pH  7.4)  mixture  (8:2  v/v).  First,  the  tested  compounds  (1.6
mM in methanol) were incubated with ctDNA (1 mg/ml in 50
mM  sodium  hydrogen  phosphate,  pH  7.4  (equal  to  1.6  mM
base pairs)) (1:1 v/v) for 60 min at 37 °C, and the incubated
solution was spotted at the origin. Secondly, tested compounds
(1.6 mM in methanol) were spotted at the origin, followed by
spotting  of  ctDNA  (1  mg/ml  in  50  mM  sodium  hydrogen
phosphate, pH 7.4 (equal to 1.6 mM base pairs)) at the same
positions.  Ethidium  bromide  (E.B.)  was  used  as  a  positive
control.  The  plates  were  developed  with  a  methanol/50  mM
sodium hydrogen  phosphate  (pH 7.4)  mixture  (8:2  v/v).  The
location of ctDNA was visualized by spraying the plate with
anisaldehyde, which gives blue color with DNA. Investigated
compounds were visualized by U.V. illumination.

2.4.  Investigation  of  DNA  Binding  by  UV-Vis
Spectrophotometry

UV-Vis measurements were performed on a Jasco V-670
spectrophotometer  (Japan)  using  1  cm  path  length  quartz
cuvettes at ambient temperature. For DNA binding studies, a
stock  solution  of  ctDNA  (0.5  mg/ml)  was  prepared  by
dissolving  ctDNA  in  tris(hydroxymethyl)aminomethane
hydrochloride (Tris-HCl) buffer (10 mM, pH 7.4) overnight at
5 °C and stirred several times to ensure the homogeneity of the
solution. The purity of DNA was determined by measuring the
ratio  A260/A280  (>  1.8)  [36].  The  concentration  of  the  ctDNA
solution  (expressed  as  base  pairs)  was  determined  from  the
U.V.  absorbance  at  260  nm  using  the  molar  extinction
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coefficient value at this wavelength (ε = 6600 1/mol*cm) [37].
The  investigated  compounds  (1A,  1B  and  2A,  2B)  were
dissolved in dimethyl sulphoxide (DMSO) immediately before
used. The freshly prepared solutions were diluted with 10 mM
Tris-HCl solution (pH 7.4) to the final concentrations (0 – 20
μM). The concentration of DMSO in the mixtures was 1% v/v.
Measurements were performed in the presence of ctDNA (50
μM) after 2 min equilibration at room temperature in the dark.
Alteration of absorbance by time was followed for 30 minutes
in a solution containing chalcone (20 μM) and ctDNA (50 μM).
Variation in  the  absorption spectrum of  ctDNA (50 μM) has
been studied as a function of chalcone concentration from 0 to
20 μM.

2.5. DNA Cleavage Study

The  cleavage  experiments  of  supercoiled  pBR322  DNA
(purchased  from  ThermoFisher  Scientific,  Biocenter  Kft.,
Szeged, Hungary) (300 ng) by the investigated compounds (20
μM) in Tris-HCl (5 mM)/NaCl (50 mM) buffer (pH 7.2) were
carried  out  using  agarose  gel  electrophoresis  [38,  39].  The
samples were incubated at 37°C for 1 h. Then, a loading dye
was added, and electrophoresis was carried out at 70 V for 90
min in TAE (tris-acetate-EDTA) buffer (40 mM Tris-acetate, 1
mM EDTA, pH 8.0) using 1% agarose gel containing 0.5 μg/ml
ethidium bromide. After electrophoresis, bands were visualized
under a U.V. illuminator. The cleavage efficiency was studied
by  the  ability  of  the  compounds  to  convert  the  supercoiled

DNA (Form I) to a nicked circular form (Form II) and linear
form (Form III).

3. RESULTS AND DISCUSSION

Several methods have been developed for investigation of
the  interaction  of  small  molecules  with  DNA  [12,  40].  To
obtain  information  of  the  mechanism  of  action,  binding
behavior of compounds 1A, 1B and 2A, 2B (Fig. 1) with calf
thymus DNA was studied on the molecular level in vitro using
TLC and UV-Vis spectrophotometric methods.

The principle of the thin-layer chromatographic method is
based  on  the  ability  of  DNA  to  migrate  on  RP-18  F254  TLC
plates,  pre-developed  with  methanol/sodium  hydrogen  phos-
phate (50 mM; pH 7.4) mixture (8:2 v/v) as an elution system
[41 - 43]. Free DNA moves along the plate and can be detected
as a blue spot on RP-18 TLC after spraying with anisaldehyde
reagent.  In  the  presence  of  DNA  intercalators  (e.g.,  E.B.),  a
portion of DNA is bound as a complex, which remains at the
origin  or  migrates  only  in  a  very  short  distance  when  the
methanol/sodium  hydrogen  phosphate  (50  mM;  pH  7.4)
mixture (8:2 v/v) is used as the mobile phase. In contrast, non-
bounding test compounds allow DNA to leave the origin and
move along the plate. The result revealed that compounds 1A,
1B, 2A, 2B showed binding affinity toward DNA com-pared to
the known intercalator, ethidium bromide used as a reference
(Fig. 2).

Fig. (2). RP-TLC chromatogram of investigated compounds and ethidium bromide (EB) (1.6 mM) (A), of compounds 1A, 1B, 2A, and 2B, and EB
incubated with ctDNA (1.6 mM) for 60 min at 37°C (B), of compounds 1A, 1B, 2A, 2B and EB (1.6 mM) spotted directly on the spot of ctDNA (1.6
mM) (C) and of ctDNA (1.6 mM) (D). Plate: silanized silica gel 60F254 (0.25 mm). Mobile phase: methanol/sodium hydrogen phosphate (50 mM; pH
7.4) mixture (8:2 v/v). ctDNA was visualized by spraying with anisaldehyde, compounds, and E.B. were visualized by U.V. illumination.
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UV-Vis  absorption  spectroscopy  is  a  simple  and  most
commonly  used  instrumental  method  for  studying  the  inter-
action  of  DNA  with  small  molecules  as  ligands.  Due  to  the
interaction of DNA base pairs with the compounds, hypo- or
hyperchromism  or/and  red  or  blue  shifts  in  the  UV-Vis
spectrum of the compounds can be observed. The magnitude of
the change in absorbance or the shift of the absorption peak is

correlated with the strength of the interaction [12, 44]. Fig. (3)
shows  the  absorption  spectra  of  the  free  ctDNA,  the  free
chalcones, and the ctDNA-chalcone mixtures. The absorption
maxima of the mixture of compound 1B and DNA exhibited a
weak  hypsochromic  (blue)  shift  relative  to  the  absorption
maxima  of  the  free  ligand  (Table  1).

Fig. (3). UV absorption spectra of ctDNA (50 μM), compound 1A (A), 1B (B), 2A (C) and 2B (D) (20 μM) and the mixture of ctDNA and chalcone
compounds (50 μM; 20 μM) in Tris-HCl buffer (pH 7.4).

Table 1. UV-Vis absorption maxima of chalcone derivatives 1A, 1B and 2A, 2B (20 μM) without and in the presence of ctDNA
(50 μM). UV-Vis absorption maxima(λmax) of the free ctDNA is 258 nm. ctDNA binding constants (K) of chalcone analogs (1A-
B), determined by spectrophotometric titration.

        Compound λmax freea

        (nm)
λmax bounda

        (nm)
Δλ

        (nm)
Binding constant

        (M-1)
1A 352 352

251
0
7b 6.1 x 104

2A 327 327
258 0 -

1B 373 370
252

3
6b 3.9 x 104

2B 376
310

376
310
258

0 -

a Data are expressed as a result of three independent measurements.
bDifference of wavelength from the UV-Vis absorption maxima of the free ctDNA (λmax = 258 nm).
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Fig. (4). UV absorption spectra of ctDNA (50 μM) with different concentrations of compound 1A (A) and 1B (B) (pH 7.4). The concentration of 1A-
B: 0 – 20 μM for curves a-i, respectively, at an increment of 2.5 μM. Inset: the plot of AO/(A-AO) versus 1/[compound] (10-6 M-1).
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On the contrary, the presence of DNA did not cause a shift
in  the  absorption  maximum  of  1A,  2A,  and  2B.  However,
compound  1A  and  its  Mannich-derivative  (1B)  caused  a
remarkable  blue  shift  in  the  absorption  maxima  of  ctDNA
(Table  1).  The  intensity  of  absorption  of  1B  decreased  on
mixing with  ctDNA. The measured absorbance  values  at  the
absorption maxima of the complexes did not change after the 2
min equilibration time.

With a fixed concentration of ctDNA, UV-Vis absorption
spectra  were  recorded  with  the  increasing  amount  of  com-
pounds 1A and 1B, respectively. As shown in Fig. (4), UV-Vis
spectra displayed that the absorption of DNA (λmax = 258 nm)
exhibited  a  proportional  growth  with  the  increasing
concentration  of  the  investigated  chalcone.  Meanwhile,  the
absorption value of the simple sum of the free ctDNA and the
free 1B was a little bit higher than the measured value of the
1B-DNA  complex.  Accordingly,  the  interaction  of  1B  and
DNA resulted in a weak hypochromic effect of the absorbance.
On  the  other  hand,  in  the  case  of  compound  1A,  a  hyper-
chromic effect could be observed; the absorption value of the
sum  of  the  free  DNA  and  the  free  1A  was  lower  than  the
measured value of the 1A-DNA complex.

Intercalation of small molecules into the DNA helix results
in redshift (bathochromism) as well as hypochromism because
of  strong  stacking  interaction  between  an  aromatic  chro-
mophore and the base pairs of the nucleic acid. Hypochromism
arises from the contraction of the DNA in the helix axis as well
as conformational changes [45]. Hyper-chromism occurs as the

result  of  possible  non-covalent  interactions,  particularly
electrostatic and groove binding between small molecules and
ctDNA  [12,  46  -  48].  Hyper-chromism  reflects  the  corres-
ponding changes of  DNA in its  conformation after  the small
molecule  is  bound  to  it  [45,  49].  The  lack  of  any  clear
isosbestic  point  in  the  chalcone-ctDNA  spectra  refers  to  the
fact that more than one type of binding modes may play a role
in  the  overall  binding,  and/or  the  1:1  chalcone:ctDNA
stochiometry  is  not  maintained  during  the  process  [44].
According  to  the  observations,  the  investigated  compounds
show  neither  pure  intercalator  (redshift  plus  hypochromism)
nor  pure  groove  binding  (high  binding  constant  plus  hyper-
chromism)  characteristics,  suggesting  that  non-covalent
interactions play the major role in the interactions [46, 47, 50].

To compare the binding strength quantitatively, based on
the variation in the absorption spectra of ctDNA upon binding
to the chalcones, the Benesi-Hildebrand equation Eq. (1) can
be applied to calculate the binding constant (K) [51, 52].

(1)

where A.O. and A represent the absorbance (λ =258 nm) of
the ctDNA in the absence and presence of compounds 1A and
1B, respectively; εC and εD-C are the absorption coefficients of
the  chalcones  (1A,  1B)  and  the  chalcone-ctDNA complexes,
respectively.

Fig. (5). Cleavage of supercoiled pBR322 plasmid (300 ng) by the investigated compounds (20 μM) in Tris-HCl (5 mM)/NaCl (50 mM) buffer (pH
7.2) for 1 h at 37°C. Lane 1: DNA (control 1); lane 2: DNA + 1% DMSO (control 2); lane 3: DNA + 1A; lane 4: DNA + 1B; lane 5: DNA + 2A; lane
6: DNA + 2B.

The plot of AO/(A-AO) versus 1/[chalcone (1A or 1B] was
constructed by means of linear fitting of the absorption titration
data (Fig. 4). The binding constants (K) were calculated from

the ratio of the intercept to the slope. The binding constants of
the  interactions  (Table  1)  indicate  that  1A  and  1B  have  a
relatively high affinity with the DNA double helix. The values
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are one or two orders of magnitude lower than those reported
for intercalators [47, 50]. However, the obtained K  values fit
well  with  that  of  the  well-established  groove  binding  agent
spermine  [46].  Furthermore,  the  binding  constant  values  are
consistent  with  those  reported  for  the  interaction  of  some
flavonoids and cyclic chalcone analogs with DNA [53, 54].

The capability of the chalcone derivatives to cleave DNA
was  tested  using  pBR322  plasmid,  which  might  undergo
transformation  into  relaxed  circular  form  (Form  II)  from  a
supercoiled form (Form I) [47, 55]. When the circular plasmid
DNA is subject to electrophoresis, a relatively fast migration is
observed  for  the  intact  supercoiled  Form  I.  When  scission
occurs in one of the strands (nicking), the supercoil relaxes to
generate  the  open-circular  Form  II,  which  moves  slower.  If
both strands are  cleaved,  a  linear  form (Form III)  is  formed,
migrating between Form I and Form II [56]. Fig. (5) shows the
cleavage results of pBR322 by the chalcone derivatives. It can
be seen that no or very slight DNA cleavage was observed for
control  experiments  (Lane  1-2)  compared  to  the  samples
treated with the chalcones (Lane 3-6). The results indicate that
each  compound  can  induce  a  weak  cleavage  of  the  plasmid
DNA.

CONCLUSION

The  interaction  of  two  hydroxychalcones  and  their
Mannich derivatives with ctDNA was studied by TLC method
and  UV-Vis  absorption  spectroscopy.  The  binding  reaction
with  the  macromolecule  was  spontaneous,  and  presumably,
non-covalent  interaction  played  a  significant  role  in  the
reaction.  The  observed  differences  in  the  spectral  features
suggest  the  importance  of  the  electron-rich  moieties  of  the
compounds.  The  detected  weak  DNA  cleavage  activity
confirms  the  previous  results  referring  that  interaction  with
DNA  might  be  a  contributing  effect  to  the  observed
cytotoxicity.  The  obtained  results  provide  additional  know-
ledge on the pharmacological effect of hydroxychalcones and
their Mannich derivatives.
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