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Abstract:

Background:  Tuberculosis  (TB)  is  a  significant  global  health  challenge  due  to  drug  resistance.  Furthermore,
tuberculous meningitis (TBM), which affects the central nervous system, has a particularly high mortality rate. TBM
drugs have low efficacy because of their low blood-brain barrier (BBB) permeability. Many institutions that treat
tuberculosis lack the infrastructure to identify specific drug-resistance mutations. The development of drugs with the
capability of treating multiple strains would contribute considerably to the advancement of TB control in countries
with limited resources. Therefore, there is an urgent requirement for novel therapeutics that can target native and
drug-resistant strains.

Objective:  This  study  aimed  to  design  a  novel  drug  to  target  native  as  well  as  drug-resistant  Mycobacterium
tuberculosis (MTB) strains associated with pulmonary TB and TBM.

Methods: RNA Polymerase beta-subunit (rpoB) was chosen because it is a validated target for MTB. Pharmacophore
features, core moiety analysis, and docking scores were used for ligand screening. Deep neural networks (DeepFrag)
were  used  for  structural  optimization,  and  binding  affinity  was  evaluated  using  AutoDock  Vina.  Custom  scoring
schemes, STWMM for TB and STWMMM for TBM, met the requirements of high binding affinity for multiple targets,
optimal pharmacokinetic profiles, and chemical synthesizability.

Results:  M1,  M2,  and M3 were  the  molecules  with  the  highest  STWMM and STWMMM scores,  indicating  their
potential for TB and TBM therapy. The average binding energy of M1 was -8.83 kcal/mol for native and mutant rpoB.
The average binding energy for M2 and M3 was -9.63 and -9.83 kcal/mol, respectively).

Conclusion: In this study, novel ligands for native and drug-resistant TB and TBM therapy were obtained by multi-
target drug design. A major challenge for current therapeutic regimens for TB and TBM is the rise of drug-resistant
strains  of  Mycobacterium  tuberculosis  and  the  necessity  of  distinguishing  them  from  the  native  strains.  The
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multitargeted ligands developed in this study have the potential to overcome these limitations.
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1. INTRODUCTION
Tuberculosis  (TB)  is  one  of  the  deadliest  infectious

diseases, competing with AIDS and malaria [1, 2]. Despite
being  a  preventable  and  curable  illness,  tuberculosis
remains a primary cause of global mortality and morbidity.
In  2022,  tuberculosis  was  the  second  leading  cause  of
death from a single infectious pathogen, surpassed only by
COVID-19.  It  claimed  about  twice  as  many  lives  as
HIV/AIDS, demonstrating its public health impact [3]. RNA
polymerase  beta-subunit  (rpoB)  plays  a  critical  role  in
transcription  and  is  essential  for  the  survival  of  Myco-
bacterium tuberculosis. Its extremely conserved structure
and its role in essential bacterial functions further support
the selection of rpoB as an attractive and critical target for
therapeutic  intervention  [4-6].  RpoB  is  the  target  of
rifampicin,  one  of  the  most  efficient  first-line  anti-TB
agents. The mutations occurring in this well-characterized
gene  are  by  far  the  most  significant  cause  of  rifampicin
resistance and are a major barrier to therapy in multidrug-
resistant  (MDR)  and  extensively  drug-resistant  (XDR)
cases. The design strategy presented in this work aims to
overcome the challenge of drug resistance across a broad
spectrum  of  MTB  strains,  including  those  involved  in
tuberculous meningitis (TBM), by designing inhibitors that
bind  effectively  to  native  and  mutant  rpoBs.  This  multi-
target  approach  has  the  potential  to  overcome  the
limitations  of  the  current  TB  and  TBM  therapies.

Tuberculous meningitis (TBM), a severe manifestation
that affects the central nervous system, is associated with
high rates of morbidity and mortality [7, 8]. It is caused by
Mycobacterium tuberculosis and can result in a variety of
neurological problems if not treated on time [9, 10]. TBM
mortality  rates  can  exceed  50%,  especially  in  cases  in
which the illness  is  not  detected early  [11].  This  burden
worsens in individuals who are co-infected with HIV and
have drug-resistant strains of tuberculosis [12, 13]. TBM is
a complicated disease that poses a significant challenge to
global  health.  Therefore,  improving  treatment  outcomes
requires an understanding of the underlying mechanisms
of  TBM,  particularly  those  linked  to  drug  resistance
[14-16].

Tuberculous meningitis causes clinical problems with a
wide range of symptoms, such as fever, headache, altered
mental  status,  and  neurological  abnormalities  [10].  The
acid-fast  bacilli  (AFB)  smear  test  is  one  example  of  a
traditional  diagnostic  technique  that  has  low  sensitivity,
especially  in  countries  with  limited  resources  where  it  is
most  frequently  used  [17,  18].  More  sensitive  diagnostic
methods,  such  as  the  GeneXpert  MTB/RIF,  have  been
widely  adopted.  However,  availability  is  still  restricted  in
many  high-burden  areas,  resulting  in  a  large  number  of
untreated or unconfirmed cases [19-21].

The  current  first-line  therapy  for  tuberculosis,  recom-
mended  by  WHO,  includes  rifampicin,  isoniazid,  pyrazi-
namide,  and  ethambutol  [22].  Although  this  therapeutic
regimen is effective for pulmonary TB, its effectiveness is
substantially reduced for MDR-TB [23].

Rifampicin (RMP) is a key component of TB treatment,
targeting  the  RNA  polymerase  enzyme,  specifically  the

beta-subunit  encoded  by  the  rpoB  gene  [24,  25].  Concer-
ning patterns in medication resistance to tuberculosis have
been  reported  by  recent  epidemiological  research,  espe-
cially  in  rifampicin-resistant  strains  of  the  disease  that
include  mutations  in  the  RNA  polymerase  beta-subunit
[26-28].  Comprehending  the  resistance  mechanisms  faci-
litated  by  these  mutations  is  crucial  in  order  to  develop
focused  therapies  that  enhance  the  management  of  TBM
[29].

It has been reported that the most common mutations
(65-86%)  occur  at  positions  451  and  456  of  rpoB.  The
emergence of RIF-resistant strains, harboring mutations,
such as S456L, H451D, H451P, H451Y, and D441V within
the  RNA  polymerase  beta-subunit,  poses  a  significant
obstacle to effective TB treatment [30-32]. The effective-
ness of the drug is decreased by these mutations because
they  alter  the  RIF  binding  site  on  RNA  polymerase.
Treatment  becomes  even  more  challenging  due  to  M.
tuberculosis's  tendency  to  develop  fitness-compensatory
mutations [33]. By enabling the resistant strains to survive
and replicate even in the absence of the medication, these
changes can lessen the fitness costs associated with drug
resistance,  extending  the  duration  of  resistant  bacterial
populations in the host and the community [34, 35]. Deve-
loping  innovative  therapies  against  tuberculosis  (TB)  by
targeting the RNA polymerase beta-subunit is a potential
path, particularly when considering drug-resistant strains
[36, 37].

RpoB mutations are present in 96.1% of RIF-resistant
MTB strains globally [38-40]. Most of the drug resistance
strains  have  mutations  in  the  Rifampicin  Resistance
Determining Region (RRDR), which is found close to the
active  site  amino  acid  residues  432-458  (amino  acids
507–533  according  to  E.coli  numbering)  of  RNA  poly-
merase  beta-subunit.  These  mutations  are  also  found  in
TBM, which affects the efficacy of treatment methods [41,
42]. A study in India found the presence of drug-resistant
mutations in TBM patients, highlighting the challenge of
managing drug-resistant TBM [43]. A study in South Africa
revealed a  high frequency of  multi-drug-resistant  (MDR)
TB strains in TB cases,  with rpoB mutations at positions
451 and 456 playing a key role [44].

Resistance mutations are not only confined to rpoB but
also  include  changes  in  other  genes,  such  as  katG  and
inhA,  which  are  implicated  in  isoniazid  activation  and
function  [45-48].  The  prevalence  of  resistant  mutants
differs by geographic region and population [49, 50]. Iso-
niazid  activation  requires  the  katG gene,  which  encodes
catalase-peroxidase. Mutations in katG can cause isoniazid
resistance.  According  to  reports,  katG  mutations  are
common  in  multidrug-resistant  (MDR)  TB  strains  and
occur in a large proportion of  TB patients [51].  Approxi-
mately 30% of MDR-TB cases have katG mutations, which
complicate treatment regimens. Mutations in inhA lead to
isoniazid resistance and are present in around 15-20% of
resistant TB strains.

Besides rpoB, katG, and inhA, mutations in genes like
embB and pncA have been related to resistance to etha-
mbutol and pyrazinamide, respectively [52-54]. Although
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less  common,  these  mutations  add  to  the  overall  comp-
lexity of TB treatment.

Drugs, such as bedaquiline, pretomanid, linezolid, and
moxifloxacin, which are novel drugs with different targets,
have been shown to be more effective than the current first-
line therapeutic regimen for MDR-TB [55]. However, since
drug resistance may develop for these novel drugs also, the
usage  of  the  new  drugs  is  only  recommended  for  cases
where  resistance  to  the  first-line  therapeutic  regimen  is
confirmed [56].  Identification of drug resistance based on
lack  of  response  may  lead  to  undesirable  irreversible
consequences in some cases, and many institutions that are
responsible  for  the  treatment  of  TB  do  not  have  the
facilities to determine the drug resistance profile. The goal
of  this  work  is  to  design  multitargeted  drugs  that  are
effective  against  native  rpoB  as  well  as  the  common
mutants  that  confer  drug  resistance  to  Mycobacterium
tuberculosis  so  that  they  can  be  prescribed  as  a  replace-
ment for rifampicin without knowledge of the state of drug
resistance.

The  Mycobacterium  tuberculosis  (MTB)  rpoB  mutants
(S456L, H451D, H451P, H451Y, and D441V) were chosen
for  this  study  based  on  their  reported  role  in  mediating
drug  resistance.  Numerous  reports  have  linked  these
changes to resistance to rifampicin, one of the major anti-
biotics used in combating tuberculosis (TB). Although these
changes  are  frequently  seen  in  pulmonary  tuberculosis
(TB), there is growing evidence that drug-resistant strains
are also associated with tuberculous meningitis (TBM) [11,
57, 58].

Research  indicates  that  TBM  cases  reflect  the  same
drug-resistance  mechanisms  as  pulmonary  tuberculosis,
with rpoB gene mutations being a major factor in reducing
the  efficacy  of  conventional  therapies  [59,  60].  This  is  a
serious  problem  for  the  management  of  TBM  since  drug
resistance can seriously impair the effectiveness of current
treatment  methods  [61].  It  is  important  to  address  these
rpoB  mutations  in  order  to  develop  novel  therapeutic
approaches,  particularly  for  drug-resistant  cases  of  TBM
when traditional therapies may not be effective.

In  this  study,  in  silico  approaches  were  utilized  to
design  novel  therapeutic  agents  to  target  rpoB  and  its
mutants.  Deep  neural  networks,  molecular  docking,  and
advanced scoring schemes were used to design, screen, and
rank  potential  drug  candidates  based  on  their  predicted
binding  affinity  and  efficacy  against  TB  and  TBM.  The
objective of this study was to design multitargeted ligands
for  effective  treatment  of  drug-susceptible  and  drug-
resistant M. tuberculosis strains to improve the treatment
outcomes for patients with pulmonary TB as well as TBM.

2. METHODOLOGY

2.1. Target Preparation
Although  seventy-one  structures  of  rpoB  of  Myco-

bacterium  tuberculosis  are  available  in  the  RCSB  PDB,
these experimentally obtained structures are either of low
resolution that is not adequate for accurate computational
docking  studies  or  structural  information  regarding  some
fragments is missing. Therefore, the structure of the native

molecular  target,  rpoB,  was  obtained  from the  AlphaFold
server  known  for  its  high-accuracy  predictions  of  protein
structures from amino acid sequences [62]. This structure
was used as the reference for our docking studies. For the
drug-resistant  mutants  of  rpoB,  including  S456L,  H451D,
H451P,  H451Y,  and  D441V,  the  mutant  models  were
generated using the Robetta server [63], which is capable
of  generating  3D  protein  structures  with  high  accuracy.
AutoDock  Tools  (ADT),  an  extensively  used  and  validated
software  package  for  preparing  docking  simulations,  was
utilized to process the receptor structures, which involved
the  removal  of  water  molecules,  the  addition  of  polar
hydrogens,  and  the  selection  of  rotatable  bonds.  All  side
chains  in  the  receptor  structure  were  defined  as  non-
rotatable.

2.2. Ligand Preparation

2.2.1. Initial Screening
A set of 2041 natural product molecules (sourced from

www.selleckchem.com) were screened for binding affinity
against the rpoB S456L mutant protein using AutoDock4
[64].  For  each  molecule,  AutoDockTools  were  used  to
prepare it as a 3D structure with the required atom types,
charge  assignments,  and  hydrogen  addition.  Then,  all
these  prepared  ligands  were  subjected  to  docking  using
AutoDock 4. Each ligand was docked into the active sites
of  mutant  rpoB  protein,  and  the  docking  pose  binding
energy  for  each  ligand  was  recorded.

2.2.2. Identification of Binding Site Pockets
AutoDock  Tools  were  used  to  define  the  binding  site

pockets of rpoB S456L. The grid box was centered over a
predicted site of activity on the rpoB S456L mutant, which
was  identified  in  earlier  studies  on  the  native  RNA  poly-
merase  beta  subunit.  The  grid  was  selected  to  be  large
enough  to  include  the  main  catalytic  site  but  also  the
secondary binding pockets.  A 0.375 Å spacing in  the grid
was selected, meeting demands for precision with compu-
tational efficiency. This box served as the docking area for
the  virtual  screening,  ensuring  that  only  relevant  confor-
mations of the ligands were considered for further analysis.

2.2.3. Screening Process
Each  of  the  2041  natural  product  molecules  was

subjected  to  virtual  screening  within  the  defined  site
pockets.  The  Lamarckian  genetic  algorithm  was  applied
for the docking simulations. This algorithm explores ligand
conformations  within  the  binding  site,  optimizing  the
ligand’s orientation and conformation to find the lowest-
energy binding mode. Each molecule was docked multiple
times to ensure the consistency of results. After docking,
ligands  were  ranked  based  on  their  binding  energy  and
their interactions with key residues in the pocket. The top-
scoring molecules were selected for further analysis.

Following screening, the core moiety structures of the
top-docked  molecules  were  analyzed  by  using  Avogadro
[65], a molecular editing and visualization software. It was
used to examine the three-dimensional structures, analyze
molecular interactions, and identify key functional groups
that  could  influence  binding  affinity  and  pharmacokinetic

http://www.selleckchem.com
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properties. This structural analysis led to the design of 32
novel  molecules.  The  ADME  (Absorption,  Distribution,
Metabolism,  and Excretion)  properties  of  these molecules
were  assessed  by  using  SWISS-ADME  [66].  The  BBB
permeability  of  the  molecules  was  assessed  using  the
PKCSM  (https://biosig.lab.uq.edu.au/pkcsm/)  [67]  tool  to
determine  their  ability  to  cross  the  blood-brain  barrier,
which is crucial for potential central nervous system (CNS)
therapeutics.

2.2.4. Advanced Docking
From the  initial  screening,  32  molecules  were  chosen

based on their binding energies and interactions with the
rpoB S456L mutant. These molecules were docked into the
active  site  of  the  rpoB  S456L  mutant  protein  using
AutoDock  Vina  [68],  which  was  employed  for  precise
binding  energy  calculations.  A  grid  box  for  docking  was
prepared with the active site at the center, with dimensions
of  66  x  74  x  72  Å  and  grid  spacing  of  0.375  Å  by  using
AutoDock  Tools.  The  docking  output,  consisting  of  10
conformers  and  their  affinity  scores,  was  visualized  by
using Pymol. These 10 molecules were further docked with
rpoB  and  the  following  drug-resistant  mutants  of  rpoB:
D441V,  H451D,  H451P,  and  H451Y.

2.2.5. Optimization with DeepFrag
To further enhance the binding affinity of the identified

molecules,  the  top  10  molecules  were  subjected  to
optimization  using  DeepFrag  (https://durrantlab.pitt.edu/
deepfrag/)  [69],  a  deep  learning-based  fragment  optimi-
zation tool.  This  optimization process involved generating
and  evaluating  novel  molecular  fragments  to  improve
binding  scores  and  refine  interactions  with  the  target
proteins.  This  integrated  approach  facilitated  the  design
and optimization of 100 novel molecules, combining compu-
tational  screening,  detailed  docking  with  binding  energy
calculations,  and  advanced  fragment  optimization  to
identify and refine potential therapeutics for targeting rpoB
mutants. From the 100 molecules designed and optimized
through  this  integrated  approach,  the  top  10  molecules
were  selected  based  on  their  superior  binding  affinity,
chemical synthesizability, favorable ADME properties, and
effective BBB permeability.

2.3. Scoring Scheme
The  AutoDock  Vina  scoring  function  was  employed  to

evaluate the binding affinity of each ligand. Vina’s scoring
function  estimates  the  free  energy  of  binding  based  on
ligand-receptor  interactions,  including  van  der  Waals
forces,  electrostatic  interactions,  hydrogen  bonding,  and
torsional  flexibility.  In  addition  to  binding  affinity,  the
pharmacokinetic  attributes  and  chemical  synthesizability
were  included  in  the  scoring  function.  Lipinski,  Ghose,
Veber, Egan, and Muegge are logical values that are non-
zero for drug-like compounds and were estimated by using
the  SWISS-ADME  server.  Lead-likeness  is  a  logical  value
and is non-zero for lead like ligands estimated by using the
SWISS-ADME  server.  Synthetic  accessibility  scores  (SA)
[70]  can  be  calculated  from  fragment  contributions  and
complexity analysis. In this study, they were obtained using
the SWISS-ADME server. SA values range from 1 for easily

synthesizable ligands to 10 for ligands that are very difficult
to  synthesize.  logBB_pkCSM  is  a  quantitative  estimate  of
BBB  permeability  obtained  by  using  the  pkCSM  server.
BBBpermeability_F  is  a  logical  value  that  is  non-zero  for
ligands  predicted to  be  BBB permeable  using the  SWISS-
ADME server.

2.3.1. STWMM Score
A weighted score, STW score, was calculated to include

terms for pharmacokinetics and chemical synthesizability in
addition to the AutoDock Vina score. It was calculated using
the following formula:

STWscore  =  -0.5  *  Vina  Score  +  1.0  *  Lipinski_F  +
0.125  *  Ghose_F  +  0.125  *  Veber_F  +  0.125  *  Egan_F  +
0.125  *  Muegge_F  +  1.0  *  Bioavailability  +  0.5  *  Lead-
likeness_F + 2.0 * (10 – SA) / 9

The last term of the STWscore was designed to have a
maximum value of 2.0 for SA=1 and a minimum value of 0
for SA=10. The weights for the STWscore were selected to
balance the requirements of  affinity  (pharmacodynamics),
pharmacokinetics, and synthetic accessibility. STWscore is
not  a  normalized  score,  and  there  is  no  maximum  or
minimum.  For  an  excellent  ligand  with  an  AutoDock  Vina
score of -10.0 kcal/mol, bioavailability of 1.0, and synthetic
accessibility of 1, which satisfies all the rules for drug-like
molecules, the STWscore will be 10.0, with a 50% score due
to  binding  affinity,  20%  from  synthetic  accessibility,  and
30% from other pharmacokinetic properties. Higher scores
are possible for molecules with higher affinity.

The STWscore was calculated for each ligand of interest
for the native form of the target as well as for each of the
mutants.  Furthermore,  the  STWMM  score  for  the  ligand
was  calculated  as  the  minimum  of  the  STWscores  for  the
native  and  mutants  that  were  under  consideration,  as
follows:

STWMM  Score  =  MIN  {Native_STWscore,  S456L_
STWscore,  H451D_STWscore,  H451P_STWscore,  H451Y_
STWscore,  D441V_STWscore}

2.3.2. STWMMM Score
A  weighted  score,  STWNscore,  was  calculated  to

include terms for BBB permeability, pharmacokinetics, and
chemical synthesizability, in addition to the AutoDock Vina
score [71].

STWNscore = -0.5 * Vina Score + logBB_pkCSM + 0.25
* BBBpermeability_F + 1.0 * Lipinski_F + 0.125 * Ghose_F
+ 0.125 * Muegge_F + 0.5 * Lead-likeness_F + 2.0 * (10 –
SA) / 9

The  last  term of  STWN score  was  designed  to  have  a
maximum value of 2.0 for SA=1 and a minimum value of 0
for SA=10. The weights for the STWNscore were selected
to  balance  the  requirements  of  affinity  (pharmacodyna-
mics),  permeability  through  the  BBB,  pharmaco-kinetics,
and synthetic accessibility. STWNscore is not a normalized
score,  and  there  is  no  maximum  or  minimum.  For  an
excellent  ligand  with  an  AutoDock  Vina  score  of  -10.0
kcal/mol,  a  logBB  of  1.0,  and  synthetic  accessibility  of  1,
which is predicted to be BBB permeable and satisfies all the
rules for drug-like molecules, the STWNscore will be 10.0,

https://biosig.lab.uq.edu.au/pkcsm/
https://durrantlab.pitt.edu/deepfrag/)
https://durrantlab.pitt.edu/deepfrag/)
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with  50% of  score  due  to  binding  affinity,  20% from syn-
thetic  accessibility,  12.5%  contribution  from  BBB  perme-
ability, and 17.5% from other pharmacokinetic properties.
Higher  scores  are  possible  for  molecules  with  higher
affinity  or  higher  logBB  values.

The  STWNscore  was  calculated  for  each  ligand  of
interest for the native form of the target as well as for each
of  the  mutants.  The  STWMMM  score  for  the  ligand  was
then calculated as the minimum of the STWNscores for the
native  and  mutants  that  were  under  consideration,  as
follows:

STWMMM  score  =  MIN  {Native_STWNscore,  S456L_
STWNscore,  H451D_STWNscore,  H451P_STWNscore,
H451Y_STWNscore,  D441V_STWNscore}

2.4. Visualization and Plotting
ChemDraw was used to create 2D representations of the

designed  ligands  [72],  PyMOL  was  used  for  visualization
and plotting of the ligand-target interactions [73], and the
PLIP  server  was  used  for  analysis  and  visualization  of
molecular  interactions  [74].

3. RESULTS
AutoDock  Vina  is  a  widely  used  open-source  software

for  molecular  docking,  developed  to  predict  the  binding
mode  and  affinity  of  small  molecules  to  their  target  pro-

teins.  AutoDock  Vina  uses  a  scoring  function,  which,  in
turn,  depends  on  various  parameters  like  van  der  Waals
interactions,  electrostatic interactions,  hydrogen bonding,
desolvation  effects,  etc.,  to  estimate  the  free  energy  of
binding, i.e., docking energy, which is a crucial parameter
in  evaluating  the  potential  of  a  molecule  as  a  drug
candidate. This energy is expressed in kilocalories per mole
(kcal/mol). A more negative value indicates a stronger and
more  favorable  interaction  between  the  ligand  and  the
target. Free energy of binding of -8.5 kcal or better (more
negative)  indicates  a  high  affinity  of  the  ligand  for  the
protein  [75-77].

The  blood-brain  barrier  (BBB)  is  a  selective,  semi-
permeable  barrier  that  separates  the  circulating  blood
from the brain's extracellular fluid in the central nervous
system (CNS). It serves as a critical checkpoint, protecting
the  brain  from  potentially  harmful  substances  while
allowing  essential  nutrients  to  pass  through  it  [78].  For
drugs intended to treat neurological conditions, the ability
to cross the BBB is  a  vital  consideration in drug design.
LogBB is  the log of  the ratio  of  the concentration of  the
ligand  in  the  brain  to  its  concentration  in  the  blood.
Ligands with logBB > 0.3 are generally able to cross the
blood-brain barrier, while molecules with logBB < -1 have
poor  access  to  the  brain  [67].  All  the  designed  ligands,
reported in Table 1, have a logBB value greater than 0.3.

Table 1. STWMM and STWMMM scores and synthetic accessibility of the designed ligands.

S.No. Molecule
Name Structure STWMM

Score
STWMMM
Score

Swiss-ADME
Synthetic
Accessibility

1 M1 7.51 7.37 4.04

2 M2 7.48 7.56 3.8

3 M3 7.45 7.38 4.82

4 M4 7.30 7.15 4.89
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The evaluation of novel therapeutic molecules targeting
RNA polymerase mutants was conducted using two distinct
scoring  schemes:  the  STWMMM  score,  which  focuses  on
drug-resistant  mutations  (DRMs)  relevant  to  tuberculous
meningitis,  and  the  STWMM  score,  which  encompasses
DRMs in Mycobacterium tuberculosis (general). The top ten
molecules  based  on  their  STWMM  score  are  presented  in
Table 1. The AutoDock Vina scores of designed ligands for
the native and rpoB mutant targets are presented in Table 2.

The  binding  energies  reflect  the  interactions  between
the  ligands  and  the  target  proteins,  which  are  crucial  for
evaluating  the  therapeutic  potential  of  these  compounds
against  native  and  drug-resistant  Mycobacterium  tuber-
culosis. The data reported in Table 2 show that the designed
molecules, M1-M7, have a binding energy of -8.5 kcal/mol or
better for native as well as for all the mutants of rpoB that
were included in this study. M8 has a binding energy of -8.5
kcal/mol  or  better  for  native  and  for  all  the  mutants  that
were included in this study, except against the mutant target

H451Y (-8.05 kcal/mol). M9 and M10 have a binding energy
of -8.5 kcal/mol or better for native and for all the mutants
that were included in this study, except against the mutant
targets H451Y and H451P.

Table 1 presents the STWMM scores, STWMMM scores,
and synthetic accessibility for the top ten designed ligands
targeting  the  native  RNA  polymerase  beta  subunit  and
mutants  observed  in  drug-resistant  strains  of  Myco-
bacteriumtuberculosis.  As  mentioned  in  Table  1,  the  top
three  molecules  are  M1,  M2,  and  M3  based  on  their
STWMM  scores.

Molecule M1, with the highest STWMM score of 7.51,
shows an  average  AutoDock  Vina  score  of  -8.83  kcal/mol.
This  suggests a favorable binding affinity across different
mutants, indicating its potential as a strong candidate for
further  development.  Specifically,  its  binding  energies
range from -8.52 kcal/mol to -9.51 kcal/mol, demonstrating
consistency  in  binding  across  the  S456L, H451D, H451P,

(Table 1) contd.....

S.No. Molecule
Name Structure STWMM

Score
STWMMM
Score

Swiss-ADME
Synthetic
Accessibility

5 M5 7.24 7 5.25

6 M6 7.21 7.01 4.89

7 M7 7.15 7.02 5.89

8 M8 6.91 6.75 5.7

9 M9 6.84 6.78 4.47

10 M10 6.69 6.5 4.2
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Table 2. Binding energies of designed ligands for native and mutant rpoB proteins.

S.No. Molecule Name
AutoDock Vina Score (kcal/mol) Average AutoDock Vina

Score (kcal/mol)Rpob2 S456L H451D H451P H451Y D441V

1 M1 -8.84 -9.51 -8.63 -8.87 -8.59 -8.52 -8.83
2 M2 -9.87 -10.92 -9.02 -9.14 -8.6 -10.24 -9.63
3 M3 -10.4 -10.44 -10.31 -9.33 -9.0 -9.49 -9.83
4 M4 -10.37 -10.67 -10.05 -9.52 -8.73 -9.02 -9.73
5 M5 -9.75 -10.59 -9.95 -9.82 -8.52 -8.93 -9.59
6 M6 -9.81 -11.25 -9.19 -8.55 -8.94 -8.93 -9.45
7 M7 -10.18 -10.05 -9.55 -9.29 -8.63 -9.44 -9.52
8 M8 -9.15 -10.1 -10.02 -9.65 -8.05 -9.98 -9.49
9 M9 -9.59 -9.25 -8.68 -7.62 -8.47 -8.77 -8.73
10 M10 -9.17 -9.95 -8.86 -7.21 -8.12 -8.86 -8.70

H451Y, and D441V mutants. The high STWMM score, high
STWMMM  score,  and  the  high  binding  affinity  of  M1
position  it  as  a  lead  compound  in  the  pursuit  of  new
therapeutics  for  pulmonary  tuberculosis  as  well  as  for
tuberculous  meningitis.

The interactions of molecule M1 with the active site of
rpoB are illustrated in Fig. (1). M1 forms a hydrogen bond
with Q614, and this interaction is critical for stabilizing the
ligand within the binding pocket. Thus, this bond makes a
significant contribution to the binding affinity of this ligand.
There are two additional hydrogen bonds in this complex.
One involves R613, which forms a medium-strength hydro-
gen bond, and another involves R454, which forms a weaker

hydrogen bond. In addition to the formation of the hydrogen
bond, R613 also forms a salt bridge to a carboxylate group
in  the  ligand.  In  addition  to  these  interactions,  R613
stabilizes  this  complex  through  π-cation  interactions.
Hydrophobic  interactions  with  V176,  Q435,  L436,  L458,
P489, and Q614 further stabilize the overall ligand-receptor
complex, especially within the hydrophobic pocket of rpoB.
These  interactions  firmly  anchor  the  M1  molecule  within
the  active  site.  The  combination  of  hydrogen  bonding,
electrostatic,  and  hydrophobic  interactions  indicates  that
there  is  a  strong  possibility  that  M1  may  retain  tight
binding  against  a  variety  of  mutations,  which  is  a  prime
concern in dealing with drug-resistant variants.

Fig. (1). Interaction of molecule M1 with the active site residues of rpoB protein. The blue lines represent hydrogen bonds, the yellow
dashed  lines  represent  salt  bridges,  the  orange  dashed  lines  represent  π-cation  interactions,  and  the  grey  dashed  lines  represent
hydrophobic interactions.
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Molecule  M2  exhibits  an  average  binding  energy  of
-9.63 kcal/mol, indicating it has one of the highest affinity
among  the  designed  compounds.  Its  individual  binding
scores,  ranging  from  -8.60  kcal/mol  to  -10.92  kcal/mol,
indicate that M2 has a high binding affinity for native rpoB
as  well  as  for  all  the  mutants  that  were  included  in  this
study. The exceptional binding affinity of M2 indicates its
potential  as a therapeutic agent for TB and TBM. The sli-
ghtly  lower  STWMM  score  of  M2,  compared  to  M1,  indi-
cates  that  M1  has  better  pharmacokinetic  properties.
However, the STWMMM score of M2 is higher than that of
M1, indicating that it has better BBB permeability than M1,
and  hence,  it  may  be  more  effective  for  TBM  therapy
compared  to  M1.  It  can  be  concluded  that  M2  will  be
effective  for  both  TB  and  TBM.

The interactions of molecule M2 within the rpoB active
site are shown in Fig. (2). Q435 forms two strong hydro-
gen bonds with M2. These interactions play a significant
role in the stabilization of the rpoB-M2 complex. Π-cation
interactions of the ligand with R454 further stabilize this
complex.  The  ligand  is  anchored  in  the  hydrophobic
segment of the active site through its hydrophobic inter-
actions  with  V176  and  D441.  In  addition,  weak  van  der
Waal’s interactions with numerous residues in the active
site  stabilize  this  complex.  The  stabilization  of  this
complex  by  numerous  interactions  indicates  that  the
binding  of  M2  would  be  robust  with  respect  to  minor
changes  caused  by  point  mutations  in  the  target.

Molecule M3 has the best average AutoDock Vina score
of -9.83 kcal/mol. The binding energies of M3, ranging from
-9  kcal/mol  to  -10.4  kcal/mol,  predict  that  it  has  a  high
binding affinity for native rpoB as well as for all the mutants

that  were  included  in  this  study,  indicating  that  it  is  a
potential  candidate  for  drug  development.  Its  consistent
performance across the mutants reinforces its potential role
in  addressing  resistance  in  combating  drug-resistant
Mycobacterium tuberculosis.  Molecule M3 is ranked third
for  TB  and  second  for  TBM.  The  STWMM and  STWMMM
scores for M3 are lower than those for M1 and M2 because
they have higher synthetic accessibility scores.

The binding interactions of molecule M3 to the active
site of rpoB are illustrated in Fig. (3). M3 forms two strong
hydrogen  bonds  with  the  backbone  of  F439,  which  is
important  because  the  backbone  interactions  are  less
prone to disruption from point mutations than interactions
involving  side  chains.  Binding  of  this  nature  by  the
backbone  enables  multitargeting,  and  it  indicates  the
possibility that M3 could be active against a large number
of rpoB mutants, including the most common resistance-
associated mutations. M3 forms another strong hydrogen
bond  with  R454.  A  salt  bridge  between  D441  and  a
tertiary  amine group in  the ligand further  stabilizes  this
complex. A strong hydrophobic interaction with F439 and
additional hydrophobic interactions with Q438 and N679
firmly  anchor  M3  within  the  active  site.  The  backbone
hydrogen  bond  with  F439  is  a  particularly  strategic
interaction for drug design, as it is less prone to alteration
by  mutations,  which  are  a  frequent  cause  of  drug
resistance.  The  diversity  of  non-covalent  interactions,
including  van  der  Waals  forces  from  multiple  residues,
increases binding affinity and makes this ligand resilient
to structural variations induced by point mutation. Hence,
M3  is  a  promising  candidate  for  the  treatment  of  drug-
resistant strains of M. tuberculosis.

Fig. (2). Interaction of molecule M2 with the active site residues of rpoB protein. The blue lines represent hydrogen bonds, the orange
dashed lines represent π-cation interactions, and the grey dashed lines represent hydrophobic interactions.
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Fig. (3). Interaction of molecule M3 with the active site residues of rpoB protein. The blue lines represent hydrogen bonds, the yellow
dashed lines represent salt bridges, and the grey dashed lines represent hydrophobic interactions.

4. DISCUSSION
The  first  line  of  therapy,  consisting  of  rifampicin,

isoniazid, pyrazinamide, and ethambutol, recommended by
WHO,  is  effective  for  the  treatment  of  pulmonary  tuber-
culosis [79]. However, this therapeutic protocol has a much
lower efficacy for tuberculous meningitis because all com-
ponents of this selected set have a low permeability through
the  blood-brain-barrier.  Rifampicin  has  a  pkCSM-logBB
value of -2.1. The corresponding logBB values for isoniazid,
pyrazinamide,  and  ethambutol  are  0.00,  -0.01,  and  -0.21,
respectively, indicating that they are also expected to have
low permeability through the BBB. Similarly, the new drugs
developed for the treatment of pulmonary TB also have very
low values of logBB. For example, bedaquiline, delamanid,
and pretomanid have pkCSM-logBB values of 0.03, -2.1, and
-1.7, respectively, indicating poor BBB permeability. All the
designed  ligands  reported  in  Table  1  of  this  work  have
pkCSM-logBB values higher than 0.3, indicating adequate
permeability through the BBB and the potential for higher
efficacy  of  treatment  for  TBM.  Customized  drug  delivery
agents,  such  as  nanoparticles,  are  being  investigated  to
improve  the  permeability  of  rifampicin  and  isoniazid  to
improve the outcomes for tuberculous meningitis [80]. Drug
resistance mutations have also decreased the efficacy of the
first  line  of  therapy.  The  BV-BRC  database  [81]  includes
descriptions of 25054 MTB strains resistant to rifampicin,
22022 MTB strains resistant to isoniazid, 2363 MTB strains
resistant to pyrazinamide, and 9283 MTB strains resistant
to ethambutol. Several novel drugs have been developed to
overcome  the  drug  resistance  problem.  However,  these
drugs  are  also  susceptible  to  development  of  drug  resis-

tance. For example, 25 MTB strains resistant to bedaquiline
and  571  MTB  strains  resistant  to  delamanid  have  been
documented  in  the  BV-BRC  database.  Although  multiple-
medication therapy,  consisting of  a  combination of  drugs,
can be utilized, it can lead to undesirable adverse effects.
The optimization of dosage and duration of each component
is more complicated for drug combinations than for single
drugs. The design of a single drug that has a high affinity
for multiple targets provides an alternative solution that is
potentially  more  efficient  [82].  Multitargeted  agents  have
been  developed  for  the  treatment  of  infectious  diseases,
such  as  malaria  and  Chagas  disease  [83,  84].  Designing
poly-functional  drugs  is  difficult  using  conventional  met-
hods.  However,  several  computational  strategies  for  the
design of poly-functional drugs have been proposed, such as
fragment-based  design  [85].  Our  approach  for  multi-
targeted  drug  design  is  also  fragment-based,  but  the
utilization  of  Deep  Neural  Networks  has  resulted  in  a
substantial increase in the efficiency of the design process
[69].

Rifampicin is one of the most effective therapeutics for
pulmonary  TB.  However,  the  emergence  of  mutations  in
its  target,  the  RNA polymerase  beta  subunit  (rpoB),  has
greatly reduced its effectiveness.  These mutations cause
major changes to the rifampicin-binding site, lowering the
drug's  ability  to  suppress  RNA  synthesis,  which  is
necessary  for  bacterial  replication  [86-88].  This  study's
major goal is to provide an effective therapeutic option for
both pulmonary TB and tuberculous meningitis (TBM) by
designing novel multitargeted ligands whose effectiveness
would not be reduced by such mutations. In this study, we
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conducted  an  in  silico  design  of  novel  ligands  targeting
RNA polymerase and its mutants.

TBM  is  a  particularly  severe  form  of  tuberculosis
involving  infection  of  the  central  nervous  system.  TBM
therapy  requires  the  design  of  drugs  that  penetrate  the
blood-brain  barrier  (BBB),  which  is  a  very  challenging
problem  [89,  90].  Current  TB  drugs,  which  have  been
developed primarily for pulmonary tuberculosis, frequently
fail  to  permeate  the  BBB  in  sufficient  concentrations  to
effectively combat TBM [91, 92]. This limitation emphasizes
the  importance  of  developing  drugs  that  are  not  only
effective  against  drug-resistant  strains  of  M.  tuberculosis
but  are  also  capable  of  crossing  the  BBB  to  treat  central
nervous  system  infections.  This  work  is  intended  to
generate such ligands by targeting rpoB and its mutations,
with  the  goal  of  reducing  the  high  mortality  rate  due  to
TBM.

RpoB  was  selected  as  the  molecular  target  due  to  its
involvement  in  bacterial  transcription  and  because  it  has
been validated as a target of Rifampicin, which is one of the
most  effective  drugs  against  TB.  Mutations  in  the  Rif-
ampicin Resistance-Determining Region (RRDR), including
S456L,  H451D,  H451P,  H451Y,  and  D441V,  were  chosen
due  to  their  high  frequency  in  clinical  isolates  and  their
effect on rifampicin efficacy [93-95]. These mutations alter
the rifampicin binding pocket of rpoB, lowering rifampicin
binding affinity and, in many cases, resulting in a high level
of  drug  resistance.  The  core  moiety  analysis,  performed
with Avogadro, was very important in refining the ligands'
structural components. By identifying the most significant
molecular  fragments  responsible  for  high-affinity  binding,
we  were  able  to  concentrate  on  ligands  capable  of
overcoming the steric and electronic alterations caused by
rpoB mutations.  This  level  of  structural  insight  is  crucial.
After  preliminary  screening,  we used  DeepFrag to  design
novel ligands. DeepFrag uses machine learning techniques
to  recommend  changes  to  small  compounds  that  improve
their binding properties while preserving or improving their
pharmacokinetic properties. This enabled a more in-depth
exploration  of  the  chemical  structures,  resulting  in  the
discovery of molecules with increased binding potential for
rpoB and its mutants.

Balancing the activity of the designed ligands, against
the multiple targets of interest is critical to ensure that a
high dose would not be required to ensure efficacy against
all  targets  of  interest  [96].  The  STWMM  and  STWMMM
scoring schemes were developed to assess the ligands' pot-
ential  efficacy  against  pulmonary  tuberculosis  and  TBM,
respectively.  These  scoring  schemes  include  the  most
impor-tant criteria for effective drugs, integrating binding
affinity,  mutational  resistance,  pharmacokinetics,  and
chemical  synthetic  accessibility  to  provide  a  complete
framework  for  evaluating  the  therapeutic  potential  of
designed molecules. These scoring schemes were designed
to  address  the  problem  that  arises  when  the  dominant
variant of the pathogen is eliminated by the utilization of an
antibiotic  and  the  niche  initially  occupied  by  the  drug-
susceptible  strain  is  rapidly  occupied  by  a  mutant  that  is
initially present at low frequency in the initial population.
The  multi-targeted  ligands  selected  by  the  STWMM  and

STWMMM  scoring  schemes  ensure  that  the  ligands  with
high  STWMM  and  STWMMM  scores  have  high  efficacy
against the native as well as against all the drug-resistant
strains.  In  addition,  since  the  designed  multi-targeted
ligands  are  effective  against  both  the  native  and  mutant
strains,  the  importance  of  obtaining  genotyping  infor-
mation,  or  for  other  tests  of  drug  resistance,  is  less  than
that for conventional drugs.

This study goes beyond the computational  aspects of
drug design to highlight the broader consequences of tar-
geting rpoB mutations. The prevalence of these mutations
in clinical isolates of drug-resistant M. tuberculosis emp-
FVhasizes  the  relevance  of  focusing  on  these  targets  in
future  treatment  approaches.  The  S456L  mutation,  for
example,  has been shown to confer high-level resistance
across  a  variety  of  geographic  regions,  making  it  an
important  target  for  therapeutic  development.  Similarly,
changes like H451D and D441V complicate the treatment
landscape since they not only provide resistance but also
modify  bacterial  fitness,  potentially  allowing  resistant
strains  to  survive  and  spread.

Moreover,  the  challenges  posed  by  TBM add  an  addi-
tional  layer  of  complexity  to  TB  treatment.  TBM  is
associated with high mortality, particularly in regions with
limited access to diagnostic tools and effective treatments.
The  ability  of  the  designed  ligands  to  cross  the  BBB  and
maintain efficacy in the central nervous system is a critical
advancement. The study’s dual focus on both pulmonary TB
and TBM reflects the real-world need for therapeutics that
can  address  the  diverse  clinical  manifestations  of  tuber-
culosis.  Future  experimental  validation  of  these  designed
ligands  is  critical  for  ensuring  their  efficacy  and  safety.
Expanding  this  approach  to  include  other  mutations  and
targets of other drugs could further enhance our ability to
combat drug-resistant Mycobacterium tuberculosis.

CONCLUSION
In  this  study,  we  successfully  designed  novel  multi-

targeted ligands as potential  drugs for pulmonary TB and
TBM.  The  designed  ligands  have  a  high  affinity  for  both
native  as  well  as  for  mutant  rpoB  of  Mycobacterium
tuberculosis.  Our  approach  involved  molecular  docking-
based  screening  and  ranking  and  deep  neural  network
(DeepFrag) based optimization. We also examined how well
these molecules might pass through the blood-brain barrier
by  calculating  pkCSM  BBB  values,  which  is  particularly
important  for  the  treatment  of  TBM,  which  affects  the
central nervous system. In addition, we assessed synthetic
accessibility  by  using  Swiss-ADME  to  ensure  that  these
molecules could be produced efficiently. AutoDock Vina was
employed  to  evaluate  binding  affinity  for  the  native  and
mutant forms of rpoB (S456L, H451D, H451P, H451Y, and
D441V),  which  are  involved  in  resistance  to  current
treatments for TB. Moreover, the designed molecules were
assessed  using  novel  scoring  schemes,  STWMM  and
STWMMM, that were designed for integrated assessment of
the  essential  features  desired  in  drugs,  such  as  binding
affinity, mutational resistance, pharmacokinetics, and syn-
thesizability.

After a thorough analysis, three promising candidates,
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M1, M2, and M3, were identified. Each of these designed
molecules was predicted to possess favorable pharmaco-
kinetics,  chemical  synthesizability,  and  a  high  binding
affinity towards native rpoB, as well as against all mutant
variants that were included in this study. Based on these
promising  results,  we  conclude  that  the  designed
multitargeted  molecules,  M1,  M2,  and  M3,  offer  a  new
treatment  option  for  TB  and  TBM,  especially  in  cases
where drug resistance is a concern. Further in vitro and in
vivo studies are warranted to confirm their effectiveness
and potential for clinical use.

In conclusion, this study represents a significant step
forward  in  addressing  the  urgent  need  for  developing
novel  therapeutic  approaches  for  TB  and  TBM  by
designing ligands with the capability to target both native
and mutant strains of Mycobacterium tuberculosis.
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