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Abstract:
Background: Parasitic plants can cause major losses in agricultural production as an important source of biotic
stress. Cuscuta is among the parasitic plant species that are widespread on all continents. The main methods used in
the control of these parasitic plants are cultural measures and physical, mechanical, biological, and chemical control.
This study aims to characterize plant-active molecules that have deactivation potential against the β-galactosidase
enzyme, which plays a role in the attachment of Cuscuta species to the host plant and act as bioherbicides.

Methods: In this context, non-mutagenic natural plant herbicides were selected from Dr. Duke's Phytochemical and
Ethnobotanical  database,  and  then  conformer  screening  analyses  were  performed  using  the  molecular
mechanics/MMFF method using Spartan software. The method was continued by performing geometry optimizations.
Semi-empirical PM6 method was applied for geometry optimizations. QSAR model was created to understand the
relationships  between  the  binding  energies  and  physicochemical  properties  of  the  studied  molecules.  Geometry
optimizations  and  scoring  studies  of  binding  energies  were  performed  in  Spartan'14  and  Autodock  Vina  1.1.2
software, respectively.

Results: In the study, five commercial chemical herbicides used against Cuscuta spp. were selected as reference
molecules  and  included  in  the  studied  molecule  set.  Later,  the  methods  applied  for  candidate  herbal  herbicide
molecules were also repeated for commercial chemical herbicide molecules and the obtained results were included in
QSAR  modeling.  In  the  modeling  studies,  linear  regression  analysis  was  performed  between  the  calculated
physicochemical parameters of the molecule set and the binding energies. BIOVIA Discovery Studio software was
used to display the results of the macromolecule-ligand docking studies.

Conclusion: According to the results obtained, among 86 plant-derived natural herbicide molecules against Cuscuta
spp., Narciclasine, Deoxypodophyllotoxin, and 3-Hydroxyuridine molecules are recommended for further evaluation
as natural herbicides, with confirmatory experimental steps suggested.
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1. INTRODUCTION
Genus Cuscuta includes some major species and is dis-

tributed worldwide. Cuscuta  species cause a considerable
decrease in the yield of agricultural products. The impact of
Cuscuta  spp.  on  agricultural  production  is  of  significant
consequence. Several studies have indicated that crop yield
loss can range from 23% to 100%, depending on the host
plant  and  environmental  conditions  [1].  The  genus  comp-
rises many species that are more damaging to agriculture,
including C. campestris and C. pentagona, which exhibit a
global  distribution  [2].  It  is  adaptable  to  various  climatic
conditions,  including  tropical,  subtropical,  and  temperate
regions [3]. The Cuscuta spp. have been observed to exert
particularly deleterious effects on members of the Fabaceae
and Asteraceae families [4]. In addition to the detrimental
parasitic  impact  on  the  plant,  it  serves  as  a  vector  for
transmitting  other  pathogens  to  plants  [5].  The  manage-
ment  of  Cuscuta  spp.  has  been  observed  to  result  in  ele-
vated costs for farmers, accompanied by a reduction in crop
yields [6]. The most prevalent species of Cuscuta in Turkey
is C. campestris,  which has been observed to have a wide
host range encompassing over 55 plant species, including
economically significant plants. Given the extensive range
of hosts, C. campestris has the potential to cause significant
disruption to agricultural productivity in Türkiye [7].

Members of the genus Cuscuta are rootless and leafless
obligate  holoparasites,  and  they  twine  around  the  host.
They have adaptations such as adhesion to the host plant,
secreting  some  enzymes,  and  inhibiting  the  immune  res-
ponse of  the host  [8,  9].  The photosynthesis  ability  of  the
Cuscuta  species  is  quite  limited  [10].  It  attaches  to  host
plants through its specialized structure called haustorium.
The haustorium attaches and penetrates the vascular tissue
system  of  the  host  plant.  They  obtain  nutrients  such  as
water,  minerals,  and  organic  compounds.  It  uses  the
nutrients  received  from  the  host  plant  for  growth  and
metabolic activities [11]. Parasitic plants interact with host
plants  through  hormonal  signaling  and  secondary  meta-
bolites,  miRNAs,  mRNAs,  and small  peptides  [8].  Cuscuta
species  secrete  the  hormone  strigolactone,  which  acts  on
the  host.  The  strigolactone  hormone  promotes  the  for-
mation and attachment of the haustorium [12]. The effective
targeting  of  the  Cuscuta  spp.  using  traditional  herbicide
treatments is a significant challenge. This is primarily due
to  the  robust  physiological  interdependence  between  the
host and parasite, which results in collateral damage to the
host plant [5, 13].

The main factor contributing to the dispersal of Cuscuta
species into agricultural areas is the unintentional mixing of
its  seeds  with  the  seeds  of  other  plants  with  similar  seed
morphology.  Particularly,  alfalfa  seeds  (Medicago  sativa)
are confused with Cuscuta seeds and cause distribution of
the  plant.  It  is  considered  that  Cuscuta  spp.  seeds  were
introduced into Europe with alfalfa seeds in the 1840s [14,
15].  In  1978,  Nemli  stated  that  C.  campestris  entered
Turkey with alfalfa  seeds imported from the USA in 1925
[16]. Cuscuta species spread out nearly all over the country
from west to east in agricultural areas higher than the sea
level, and open areas in forests, roadsides, and grasslands
[17]. Furthermore, 55 different hosts of C. campestris were

observed  in  Turkey.  Some  of  the  important  agricultural
hosts  are  shown  in  Table  1  [7,  16,  18].

Table  1.  Agriculturally  significant  host  plants  of
cuscuta  species  have  been  observed  in  Turkey.

Plant Common
Name Plant Common

Names

Medicago sativa L. Alfaalfa Vitis vinifera L. Grapevine
Pimpinella anisum
L. Anise Cucumis melo L. Melon

Carum carvi L. Caraway Solanum tuberosum
L. Potato

Nicotiana tabacum
L. Tobacco S. lycopersicum L. Tomato

Cicer arietinum L. Chickpea Beta vulgaris L. Sugarbeet
Asparagus
officinalis L. Asparagus - -

Parasitic plants are a unique group of plants that pose
a  significant  threat  to  agricultural  production.  Parasitic
plants  can  cause  significant  production  loss  as  a  biotic
stress factor. There are some reports about reductions in
yield.  In 2010,  Zhao reported a 30-50% loss observed in
soybean (Glycine max), in 2023, Yuan et al. reported up to
26% loss in soybean under high parasitism, in 2007, Aly
reported a 50-75% loss in tomato (Solanum lycopersicum),
in 2002, Marambe et al. reported a 72% loss in tomato and
a 29% loss in chili (Capsicum annuum), in 20023, Moorthy
et  al.  reported  an  85.7%  loss  in  chickpea  (Cicer
arietinum), and an 87% loss in lentil (Lens culinaris), and
Narayana, 1989 reported 60-70% loss in alfalfa (Medicago
sativa).

Currently, weed control is one of the main problems in
agricultural production. The use of herbicides has become
a necessity to produce adequate yields [19]. However, her-
bicide resistant crops are becoming an increasing problem
[20]. The Herbicide Resistance Action Committee (HRAC)
has categorized herbicides into 4 main groups based on 26
different  Modes  of  Action  (MoA).  The  main  groups  are
herbicides affecting light activation of ROS, cellular meta-
bolism, cell division and growth, and unknown MoA [21].
Along  with  increasing  herbicide  resistance,  the  develop-
ment  process  for  targeted  MoA  has  remained  relatively
slow [22]. The development of new herbicides from natural
resources  is  a  promising  effort  to  cope  with  the  weed
problem.  The  MoA  of  herbicides  depends  mainly  on  the
inhibition  of  critical  enzymes  and  proteins.  Acetolactate
synthase,  Acetyl-CoA  carboxylase,  Serine  264  and  Histi-
dine 215 in Photosystem II (PSII), and fatty acid synthase
pathways are the major MoA targets for herbicide binding
and  inhibition  [21].  There  are  several  potential  MoA
targets for the control of Cuscuta spp. such as perception
proteins,  hydrolytic  enzymes,  and  cell  wall  organizing
enzymes.  β-galactosidase  enzyme  is  involved  in  the  cell
wall organization process [23, 24]. It also takes part in the
production of sticky cement at the invasion site for haus-
torial  attachment  [25].  β-galactosidase  is  a  key  enzyme
that plays a critical  role in the early stages of  Cuscuta’s
attachment to host plants. It is involved in the hydrolysis
of galactosyl residues in host cell walls, which is a crucial
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step  for  facilitating  parasitic  invasion  and  establishing
attachment [26]. As such, this enzyme directly impacts the
ability of Cuscuta  to penetrate the host tissue, making it
an essential target for intervention. Furthermore, the inhi-
bition  of  β-galactosidase  could  effectively  disrupt  Cus-
cuta’s  parasitic  behavior at  an early stage,  preventing it
from  successfully  attaching  and  thereby  reducing  the
plant's overall impact on host crops [27, 28]. The fact that
this enzyme is central to the parasitism process supports
its selection as a promising target for bioherbicide deve-
lopment.

Molecular  descriptors  and  binding  calculations  of
widely  used  Commercial  herbicides  (CH)  were  also
included  in  this  study  to  compare  the  Cndidate  Bio-
Herbicide  (CBH)  molecules.  The  calculated  physicoche-
mical parameters can be listed as area (Å2), volume (Å3),
EHOMO (eV), ELUMO (eV), molecular weight (MW), lipophilicity
(logP), polarizability (α), dipole moment (μ), hardness (η),
softness (S), electronegativity (χ) and electrophilicity index
(ω). According to Koopman’s theorem, the negative of the
EHOMO  and  ELUMO  corresponds  to  ionization  potential  and
electron affinity, respectively. MW is a parameter directly
related to the absorption of  a molecule.  If  the MW  of  the
candidate molecule is higher than the threshold value, the
absorption  decreases,  indicating  an  inverse  relationship
between the two properties [29]. Furthermore, logP is one
of the most important parameters taken into consideration
when  evaluating  the  drug  potential  of  candidate  mole-
cules. Calculation of the logP parameter provides a way to
interpret the hydrophobic or hydrophilic structures of the
molecule  [30,  31].  α  parameter,  which  is  an  important
parameter  in  understanding  structure-activity  relation-
ships and chemical-biological interactions, is defined as a
linear  variation  of  the  electronic  charge  distribution  in
relation to the applied electric field. The μ value, which is
another  physicochemical  parameter  taken  into  consi-
deration,  is  a  parameter  that  is  frequently  calculated  in
the  identification  of  molecules  and  in  structure-activity
relationship  modeling  and  allows  us  to  make  determi-
nations about the electron distributions of molecules [31].
The  χ  concept  was  determined  by  Pauling  (1960)  re-
presents the power of an atom in a molecule to attract an
electron towards itself [32]. η, a measure of a molecule's
potential to polarize and a chemical's resistance to chan-
ging electronic configurations, is an important quantity in
the theory of chemical reactivity, as proposed by Pearson
et  al.  (1973).  On the other  hand,  S,  which describes  the
potential of a molecule to accept electrons in its structure,
is  the  measure  of  a  chemical's  propensity  to  change  its
electronic configurations according to the theory of che-
mical  reactivity.  ω  value  is  the  parameter  that  indicates
the tendency of the molecule to accept electrons into its
structure [33].

The study  aims at  the  in-silico  identification  of  novel
CBH molecules that possess herbicidal properties by wea-
kening parasite-host tissue compatibility through binding
to the β-galactosidase enzyme, offering stronger binding
affinity than current CHs. The identified natural herbicide
molecules will reduce and, if possible, eliminate the dam-

age caused by Cuscuta spp. to agricultural crops without
causing any ecological contamination. The docking studies
were  carried  out  to  assess  the  interactions  between  the
candidate  molecules  and  the  structure  of  the  target
molecule, which is responsible for the haustorium binding
mechanism  of  Cuscuta  spp.  In  order  to  interpret  the
binding  affinities  obtained,  the  physicochemical  para-
meters  of  the  related  structures  were  also  calculated.

2. METHOD
Current commercial herbicides such as atrazine, chlor-

propham, diquat, paraquat, and propyzamide were used as
reference  molecules  in  the  study  to  evaluate  the  binding
efficacy  of  the  CBH.  The  2D  structures  and  SwissAdme
maps of the CH are depicted in Fig. (1). Due to the unavail-
ability of the Cuscuta sp. β-galactosidase crystal structure
in the database, the Tomato β-galactosidase enzyme (PDB
id:  6ik5)  with  a  1.82  Å  resolution  crystal  structure  was
selected  as  the  target  macrostructure.Furthermore,  86
candidate  ligand  molecules  with  herbicide  activity  were
selected from the database of Dr. Duke [34]. Additionally, 5
CHs  used  in  the  market  against  Cuscuta  species  parti-
cipated  in  the  docking  study  and  totally  examined  91
molecules.  The  coordinates  of  the  active  site  of  the  β-
galactosidase  enzyme  structure  were  determined  as  x  =
-19.234, y = -24.734, and z = 37.810. The SwissADME pro-
gram [35] was used to evaluate the drugability potentials of
the candidates. Geometry optimizations have been carried
out with the semi-empirical PM6 method [36, 37] by using
Spartan'14 V1.1.4 software [38]. Docking studies and visua-
lizations  were  carried  out  with  AutoDock  Vina  [39]  and
BIOVIA Discovery Studio Visualizer [40] software, respec-
tively.

According to the obtained results via the PM6 method,
the η, S, χ, and ω values were calculated by the following
Eqs. (1-4) (Phillips 1961 [41]):

(1)

(2)

(3)

(4)

3. RESULTS AND DISCUSSION
In this study, CBH molecules were determined by doc-

king calculations. Computed physicochemical parameters
of the CBH molecules, A(Å2), V(Å3), MW,  EHOMO  (eV), ELUMO

(eV),  α,  μ  (debye),  logP,  η,  S,  χ,  ω,  and BE values  (kcal.
mol-1), are given in Table 2.

According  to  the  result  in  Table  2,  the  calculated
physicochemical  parameters  of  the  CBH  molecules
included in the linear regressions were observed to vary in
the  range  of  -5.71<logp<3.01,  0.49<μ<11.95,  48.50<α
<85.00,  133<Å2<560,  114.03<Å3<562.15,  110.11<M
W<622.5,  -4.55<η<-3.44,  -0.15<S<-0.10,  4.28<χ<5.51,
and -3.39<ω<2.00. In Table 2 above, the physicochemical
parameter ranges for regression analysis of selected mole-
cules  with  high  affinity  (>-7.6  kcal.mol-1)  Narcicla-sine,

η = (EHOMO-ELUMO)/2 

S = 1/(2*η) 

χ = (EHOMO+ELUMO)/2

ω = χ2 / 2*η 
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Deoxypodophyllotoxin, and 3-Hydroxyuridine were perfor-
med given the  physicochemical  parameter  ranges  of  the
structures with high binding affinity were determined as
-2.2<logp<-4.9,  3.1<μ<6.1,  57.5<α<70.8,  252<Å2<393,
225351<Å3<562.15,  and  260<MW<398.  Likewise,  struc-
tures  L-1  (Calcein)  and  L-2  (Asperuloside),  which  also
show very  high  affinity,  were  not  considered  candidates
due to SwissAdme criteria.

The results of linear regression analysis performed to
determine the correlation values (R2) between the physico-
chemical parameter (logP, μ, α, Å2, Å3, MW) and the binding
energies  of  CBH  molecules  are  given  in  Table  3.  When
Table  3  is  examined,  the  R2  values  for  all  the  critically
important  parameters  were  obtained  >0.7,  while  the
highest  correlation  value  was  calculated  as  R2=0.83  for
MW.

Fig. (1). 2D structure of CHs.

Atrazine

PubChem Id:   2256  

Chlorpropham 

2728 

Paraquat 

15939 

Diquat 

6795 

Propyzamide 

32154 
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Table 2. The physicochemical parameter and binding energy values of the all studied molecules.

CH

Ligands Å2 Å3 MW EHOMO ELUMO α μ logP η S χ ω BE Ki

CH-1 (Atrazine) 249.8 213.0 215.7 -9.4 -0.1 56.5 3.6 2.8 -4.6 -0.11 4.8 -2.4 -5.6 7.8 X10-5

CH-2 (Chlorpropham) 237.9 210.8 213.7 -9.2 -0.3 56.4 3.0 0.9 -4.5 -0.11 4.7 -2.5 -6.2 2.9 X10-5

CH-3 (Diquat) 212.9 203.9 184.2 -6.5 0.4 56.3 3.7 -0.4 -3.4 -0.15 3.0 -1.3 -5.4 1.1 X10-4

CH-4 Paraquat 150.9 128.9 186,3 -9,8 -1.3 49.8 6.4 -0.1 -4.3 -0.1 5.5 -3.6 -5.4 1.1 X10-4

CH-5 (Propyzamide) 269.6 243.5 256.1 -9.9 -0.9 59.0 3.2 0.9 -4.5 -0.11 5.4 -3.2 -5.9 4.7 X10-5

CBH

L-1 (Calcein) 560.2 562.1 622.5 -9.5 -1.0 85.0 11.9 -5.7 -4.2 -0.12 5.2 -3.2 -10.2 3.3X10-8

L-2 (Asperuloside) 543.3 446.1 414.4 -8.0 -1.1 75.9 9.2 -2.5 -3.4 -0.15 4.5 -3.0 -8.1 1.2X10-6

L-3 (Narciclasine) 283.5 268.4 307.4 -9.2 -1.2 61.2 6.1 -4.9 -4.0 -0.12 5.2 -3.4 -9.9 5.5 X10-8

L-4 (Deoxypodophyllotoxin) 393.1 387.2 398.4 -8.8 0.2 70.8 4.1 -3.0 -4.5 -0.11 4.3 -2.0 -7.7 2.3 X10-6

L-5 (3-Hydroxyuridine) 252.2 225.1 260.2 -10.0 -1.0 57.5 3.1 -2.2 -4.5 -0.11 5.5 -3.4 -7.6 2.7 X10-6

L-6 (Ciprofloxacin) 333.2 320.6 331.3 -8.6 -0.8 65.5 9.3 -1.6 -3.9 -0.13 4.7 -2.9 -7.5 3.2 X10-6

L-7 (Repin) 360.1 351.8 362.4 -10.4 -0.5 67.6 6.7 -0.4 -5.0 -0.10 5.5 -3.0 -7.1 6.2 X10-6

L-8 (Diboa) 183.0 164.3 181.2 -9.1 -0.9 52.8 3.4 -1.4 -4.1 -0.12 5.0 -3.0 -6.9 8.7 X10-6

L-9 (Solstitialin) 289.0 278.2 280.3 -10.2 0.1 61.5 3.8 -0.1 -5.1 -0.10 5.0 -2.5 -6.6 1.5 X10-5

L-10 (Boa) 261.5 233.7 207.3 -8.4 0.1 58.3 5.3 0.0 -4.3 -0.12 4.1 -2.0 -6.5 1.7 X10-5

L-11 (Mimosine) 213.2 186.2 198.2 -8.8 -0.4 54.5 5.5 -1.5 -4.2 -0.12 4.6 -2.5 -6.4 2.0 X10-5

L-12 (Grandinol) 267.4 249.6 252.3 -9.6 -0.9 59.6 2.5 -1.4 -4.3 -0.12 5.3 -3.2 -6.4 2.0 X10-5

L-13 (Cumambrin B) 277.1 270.1 264.3 -9.5 -0.4 61.1 4.9 0.6 -4.6 -0.11 4.9 -2.7 -6.3 2.4 X10-5

L-14 (L-Canaline) 156.0 128.9 134.1 -9.9 0.4 49.4 1.2 -1.6 -5.1 -0.10 4.8 -2.2 -6.1 3.4 X10-5

L-15 (Benzoxazolinone) 147.7 130.5 135.1 -9.3 -0.6 49.9 4.6 -0.7 -4.4 -0.11 4.9 -2.8 -6.1 3.4 X10-5

L-16 (Indole-3-acetic acid) 200.0 179.3 175.2 -8.6 -0.1 53.9 2.0 -0.7 -4.3 -0.12 4.4 -2.3 -5.9 4.7 X10-5

L-17 (Hydroxyproline) 150.7 126.1 131.1 -9.5 0.3 49.3 1.1 -1.2 -4.9 -0.10 4.6 -2.1 -5.7 6.6 X10-5

L-18 (Catechol) 132.9 114.0 110.1 -8.8 0.0 48.6 2.4 -0.6 -4.4 -0.11 4.4 -2.2 -5.7 6.6 X10-5

L-19 (Methylenecyclopropylglycine) 165.0 137.1 127.1 -8.7 -0.3 50.5 2.8 -0.4 -4.2 -0.12 4.5 -2.4 -5.7 6.6 X10-5

L-20 (2-Propylquinoline) 217.0 200.1 171.2 -9.2 -0.6 55.6 1.9 2.3 -4.3 -0.12 4.9 -2.7 -5.6 7.8 X10-5

L-21 (Cinnamic acid) 182.1 160.1 148.2 -9.7 -0.9 52.3 2.8 1.3 -4.4 -0.11 5.3 -3.2 -5.6 7.8 X10-5

L-22 (Dehydromatricaria esther) 235.7 200.9 172.2 -9.6 -1.1 55.7 4.3 2.0 -4.2 -0.12 5.4 -3.4 -5.5 9.3 X10-5

L-23 (Borneol) 194.2 181.4 154.3 -10.0 3.0 53.1 2.2 2.4 -6.5 -0.08 3.5 -1.0 -5.4 1.1 X10-4

L-24 (Pseudoisoeugenol) 207.0 184.6 164.2 -8.3 0.0 54.4 0.8 0.2 -4.1 -0.12 4.2 -2.1 -5.4 1.1 X10-4

L-25 (Eucalyptol) 195.3 182.1 154.3 -9.4 2.7 53.3 1.6 1.9 -6.0 -0.08 3.4 -0.9 -5.3 1.3 X10-4

L-26 (Beta-Pinene) 184.1 170.8 136.2 -9.5 1.5 52.7 1.0 3.0 -5.5 -0.09 4.0 -1.5 -5.3 1.3 X10-4

L-27 (Terpinen-4-ol) 206.0 187.8 154.3 -9.3 1.4 54.1 1.9 2.2 -5.3 -0.09 4.0 -1.5 -5.2 1.5 X10-4

L-28 (Limonene) 197.4 176.8 136.2 -9.1 1.2 53.2 1.0 3.0 -5.2 -0.10 3.9 -1.5 -5.2 1.5 X10-4

L-29 (Cinnamyl alcohol) 179.8 157.9 134.2 -9.3 -0.1 52.0 1.9 1.2 -4.6 -0.11 4.7 -2.4 -5.1 1.8 X10-4

L-30 (Alpha-Pinene) 184.6 170.8 136.2 -9.0 1.5 52.8 0.5 2.9 -5.2 -0.10 3.7 -1.3 -5.0 2.2 X10-4

L-31 (Pinene) 183.8 171.3 136.2 -7.9 0.8 53.2 1.4 2.8 -4.3 -0.12 3.5 -1.5 -5.0 2.2 X10-4

Table 3. R2 values were obtained for logP, μ, α, Å2, A3, and MW parameters.

Parameter R2 value

logP 0.70
μ 0.70
α 0.73
Å2 0.71
Å3 0.72
MW 0.83

The interactions obtained are of critical importance for
the identification of important amino acids on the active side
of proteins. The interacting amino acids and bond distances
are crucial in determining whether the ligands bind to the
correct  site  in  docking  studies,  which  amino  acids  they

interact  within  the  active  site,  and  in  assessing  the  signi-
ficance  of  mutations  in  potential  mutation  studies.  There-
fore,  the  observed  interacting  amino  acids  and  the  inter-
action types/distances between 6IK5 and CH/CBH molecules
are summarized in Table 4.
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Table 4. Interacting amino acids with CHs/CBHs and interaction distances.

- CH-1 CH-2 CH-3 CH-4 CH-5 L-1 L-2 L-3 L-4 L-5 L-6 L-7 L-8 L-9 L-10 L-11 L-12

Y74 - 5.2 - - - - - - - - - - 2.59 - - 2.94 -
C118 - 4.38 5.44 - 4.3 - - - - - - 3.62 5.24 - - 4.15 -
E120 3.62 4.13 - - 4.36 - - 1.81 - 2.32 - 2.16 2.71 - 2.22 - -
N180 - - - - - - - - - 3.31 - - 2.65 - - - -
E181 5.17 2.21 - - - 2.97 - 1.91 - - - - - - - 3.46 2.49
K217 - - - - - - 2.83 - - - - - - - - - -
C229 - - - - - - 4.76 - - - - - - - - - -
F232 - - - - - - - - - - - - - 3.08 - - -
Y233 - - - - - 2.99 - - - - - - - 2.20 - - -
E250 - 3.90 - - - - - 2.28 - 3.63 - - 1.82 - - 3.58 -
W252 - - 5.27 - 6.47 5.13 - - 5.11 - - - - - - 5.78 4.82
W255 5.26 - 5.43 - 5.29 5.61 - 4.90 4.50 4.94 - - - - 4.86 - -
Y256 - - - - - - - 2.71 - - - - - - 4.67 - -
Y289 4.18 - 5.26 - 4.83 - - - - 3.12 - - - - - 5.52 4.82
I306 - - - - - - - - - - - - - - 5.25 - -
Y312 - - - - 5.18 - - - 3.63 - - - - - - - -
S379 - - - - - - - - - - 2.15 - - - - - -
L516 - - - - - - - - - - - - - - 4.32 - -
P519 - - - 5.44 - - - - - - - - - - - - -
V548 - - - - - - - - - 5.15 - - - - 4.26 - -
W555 - - - 4.43 - - - - - - - - - - - - 3.99
L560 - - - 3.42 - - - - - - - - - - - - -
K667 - - - - - - - - - - 5.16 - - - - - -
G671 - - - - - - - - - - 3.59 - - - - - -
N674 - - - - - - - - - - 3.00 - - - - - -

- L-13 L-14 L-15 L-16 L-17 L-18 L-19 L-20 L-21 L-22 L-23 L-24 L-25 L-26 L-27 L-28 L-29 L-30 L-31

Y27 - - - - - - - - - - - 4.07 - - - - - - -
Y74 - 2.83 - - - 2.71 - - 2.8 - - - - - - - - - -

C118 - 2.68 4.25 4.09 - 4.51 - 4.10 - - - - - - 5.25 - - 4.38 -
A119 - - - - 3.33 - - - - - - - - - - - - - -
E120 - 2.28 2.13 - 2.46 2.08 2.52 - - - - - - - - - - - -
E181 - - - 2.40 - - - - - - - - - - - - - - -
V205 - - - - - - - - - - - 5.09 - - - - - - -
P212 - - - - - - - - - - - 5.36 - - - - - - -
P224 - - - - - - - - - - - 4.61 - - - - - - -
F232 3.00 - - - - - - - - - - - - - - - - - -
Y233 2.48 - - - - - - - - - - - - - - - - - -
R238 - - - - - - - - - - 3.80 - 5.06 4.77 - - - - -
P239 - - - - - - - - - - 3.82 - 5.38 5.38 - - - - -
K244 - - - - - - - - - - 2.28 - - - - - - - -
K246 - - - - - - - - - - - - 4.76 4.47 - - - - -
E250 - - 3.47 - - 3.59 - 3.63 2.12 - - - - - - - - - -
W252 4.87 - 5.71 5.07 - - - 4.69 - - - - - - 3.92 - - 5.03 5.02
W255 5.11 - - 4.90 3.97 - - 5.01 - - - - - - - - 4.73 4.58 4.60
Y256 - - - 3.02 - - - - - - - - - - - 4.52 - 5.25 5.30
N282 - - - - - - - - - - - - 3.12 - - - - - -
Y289 - 3.05 5.36 - - 5.44 - 5.19 - - - - - - - - 3.24 5.37 5.34
L304 - - - - - - - - - - - - - - - 5.14 - - -
I306 - - - - - - - - - - - - - - - 5.19 - - -
Y312 - 2.08 2.70 - - - - - - - - - - - - - - - -
L516 - - - - - - - - - 4.25 - - - - - 4.14 - - -
P519 - - - - - - - - - 4.50 - - - - - - - - -
V548 - - - 5.27 - - - - 4.61 5.13 - - - - 4.49 4.62 - - -
W555 - - - - - - - - - 4.70 - - - - - 4.72 - - -

H Bond Pi-Sigma C-H Bond Unsupported Pi-Alkyl Alkyl
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On  the  other  hand,  in  a  way  that  supports  Table  4
above, it is observed that the CH/CBH agents that stand
out  in  the  docking  study  in  the  visuals  given  in  Table  5
below are also located in the same active pocket.

Another perspective of this study is the detailed analysis
of the interactions between the amino acids in the active site
of the target protein structure and the candidate molecules.
The  interaction  analysis  was  conducted  by  compiling  the
data obtained from the interaction maps obtained through
the  BIOVIA  Discovery  Studio  software  used  after  the  doc-
king  results.  According  to  the  data,  the  most  important
amino acids in the active site of  the macro-structure were
determined as Tyr74, Glu120, Asn180, Glu181, Phe232, and
Glu250  in  types  of  interaction  and  distance.  While  deter-
mining  these  amino  acids,  hydrogen  bonds  established
between molecules were taken into consideration. The for-
mation of H bonds in the range of 1.81-5.17 Å increased the
effect of these bonds on the affinity between structures. In
addition, it has been calculated that π-π bonds formed with
amino acids Trp252 and Trp255 containing aromatic rings
are formed at a longer bond distance than H bonds. Thus, π-
π bonds’ contribution to the binding energies was less. The
π-alkyl  bonds  between  an  aromatic  and  alkyl  group  are
mostly between the amino acids Tyr289 and Val548 of the
macrostructure and the candidate molecules. The fact that
these  bonds  are  observed  at  a  distance  of  4.18-6.47  Å
indicates that their contribution to affinity is less than other
interactions.  According to these data,  the best CBHs were
determined as  Narciclasine,  3-Hydroxyuridine,  and  Deoxy-
podophyllotoxin for interaction with the macro-structure, as
shown in Fig. (2).

To test the selectivity of the CBHs, their interactions
with crucial amino acids in the active region of the macro-
structure were compared to those of five commonly used
CHs, which were included in the study. The amino acids
with  which  CH  molecules  interact  were  determined  as
Glu120, Glu181, Trp225, Trp252, and Tyr289. In addition,
it  was  determined  that  the  bond  distances  observed  in

pesticide molecules were longer than the bond distances
of CBH molecules with the enzyme. Additionally, when the
bond  types  were  compared,  it  was  observed  that  CH
molecules  interacted  with  Glu120  amino  acid  with  a  π-
anion  bond  at  a  bond  distance  of  about  4  Å,  while  CBH
molecules interacted with a traditional H bond at a bond
distance  of  about  2  Å.  This  situation  has  also  been
observed between other important amino acids and CHs.
While  the  binding  affinity  values  calculated  for  CHs
ranged from -5.4 to -6.2 kcal.mol-1, the binding affinities of
the studied CBH molecules were calculated between -4.5
and -10.2 kcal.mol-1. It has been observed that CBHs inter-
act  with  much  more  than  CHs  and,  as  a  result,  exhibit
higher  affinity.  The  increase  in  the  rate  of  the  binding
affinity  of  the  studied  CBH  molecules  against  CH  mole-
cules in the β-galactosidase inhibition is given in Table 6.

Bioherbicides, which use natural metabolites to control
weeds,  are  a  viable  alternative  to  conventional,  harmful
chemical herbicides. Natural herbicides have been shown
to effectively inhibit weed growth with little or no impact
on  the  environment.  The  most  important  feature  of  bio-
herbicides  is  their  narrow  spectrum of  action,  i.e.,  their
ability  to  control  target  species  without  harming  other
organisms [42].  In addition, the prevalence of herbicide-
resistant  weeds  is  increasing,  and  public  concern  about
the use of chemical herbicides is growing, creating a need
for the development of new natural herbicides [43]. In the
last four decades, a small number of new herbicides have
been introduced into  agriculture.  This  situation requires
new ways to develop efficient, biologically safe herbicides
[44].  Some  biotechnology  companies  are  working  on
developing new pesticides by employing in-silico approa-
ches such as artificial intelligence, machine learning, and
high-throughput digital systems. The use of digital systems
and an in-silico approach enables the time-efficient scree-
ning  of  thousands  of  molecules,  facilitating  the  identifi-
cation of novel herbicide candidates [45].

Table 5. Binding sites of CHs and CBHs.

Atrazine Chlorpropham Diquat Paraquat

Propyzamide 3-Hydroxyuridine Deoxypodophyllotoxin Narciclasine
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Fig. (2). The best CBHs and interactions with the β-galactosidase enzyme.

Table 6. The rates of the binding energy (kcal.mol-1) of the studied CBHs against CHs.

CBH BEs of CBH CH BEs of CH Affinity Difference Number of CBH≥CH

Calcein -10.2 Chlorpropham -6.2 2-10.000 33
Narciclasine -9.9 Propyzamide -5.9 4-20.000 42
Deoxypodophyllotoxin -7.7 Atrazine -5.6 8-40.000 55
3-Hydroxyuridine -7.6 Paraquat -5.4 12-63.000 55
Ilicic acid -7.5 Diquat -5.4 12-63.000 55
Ciprofloxacin -7.4 - - - -
Podolactone B -7.2 - - - -
Repin -7.1 - - - -
Castanospermine -7.0 - - - -
Diboa -6.9 - - - -
Sandaracopimaradienediol -6.8 - - - -
Balfourodinium -6.7 - - - -
Solstitialin -6.6 - - - -
Boa -6.5 - - - -

Narciclasine 3-Hydroxyuridine

Deoxypodophyllotoxin 
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Fig. (3). 2D structures of suggested candidate molecules.

Commercial  herbicides have some adverse effects on
the environment and biological  organisms.  In this  study,
several  commonly  used  herbicides,  including  atrazine,
chlorpropham,  paraquat,  diquat  and  propyzamide,  were
employed for the comparison of the binding efficiency of
the bio-herbicides. Atrazine is one of the most persistent
herbicides, causing long-term soil and sediment pollution.
With its high efficiency at a low price, it has been used all
over the world [46]. Chlorpropham (CIPC) is a widely used
and effective herbicide for sprout inhibition during potato
storage. However, due to concerns about its toxic nature
and  potential  public  health  impacts,  the  renewal  of  the
CIPC has not been authorized by the European Union (EU)
[47]. The European Union banned paraquat in 2007 due to
its high persistence, accumulation rates, and toxicity [48].
It causes genetic, physiological, and biochemical changes,
as  well  as  oxidative  stress  in  nearly  all  living  cells  [49].
Diquat has a structural similarity to paraquat and is also a
highly persistent, non-selective herbicide. Furthermore, it
has  been  banned  in  the  USA and  EU,  and  Paraquat  and
diquat share the same mode of action [50].

Propyzamide is a toxic and highly persistent chemical,
particularly in aquatic environments. It is currently still in
use. However, the EU has identified this chemical as one
that  may have adverse effects  on various components of
the environment, including groundwater, birds, mammals,
and aquatic organisms [51].

The present study analyzed 86 natural plant chemicals
as potential herbicide candidates and three of these were
proposed as natural herbicides as a potential replacement
for  commercial  herbicides.  The  chemicals  proposed  are
narciclasine, deoxypodophyllotoxin, and 3-hydroxyuridine.
Narciclasine  is  an  alkaloid  derived  from  the  Amarylli-
daceae family and has been employed in the treatment of
certain  tumors  since  ancient  times.  It  has  been  demon-
strated that the substance exerts inhibitory effects on the
growth  of  other  plants  [52].  In  a  study  on  narciclasine

conducted  by  Hu  et  al.  in  2014,  phytotoxic  effects  on
lettuce  (Lactuca  sativa)  were  observed.  The  phytotoxic
effects of  narciclasine are due to its ability to arrest the
cell  cycle  and  cause  DNA  damage  in  the  sample  plants
[53].  In  another  study,  Qiao  investigated  the  antifungal
effects  of  amaryllidaceous  alkaloids,  including  narci-
clasine. The authors stated that lycorine and narciclasine
have high levels of antifungal activity. However, the use of
narciclasine in a standalone treatment is not advised due
to its phytotoxic effects [48]. Deoxypodophyllotoxin is also
used for anticancer treatments for a range of cancer types
due to its high cytotoxic impact on cell proliferation [55].
The  other  bioherbicide  candidate,  3-hydroxyuridine,  is
derived from the Baillonella toxisperma tree and has been
shown  to  have  both  phytotoxic  effects  and  herbicidal
activity.  It  has  been  reported  that  3-hydroxyuridine  is
effective on cucumber, radish, and a variety of weeds but
not on Zea mays [54]. The identification of plant CBHs via
in  silico  methods  allows  for  the  selection  of  chemical
substances to be carried out with greater ease and greater
speed due to the use of computational power. Three che-
micals were selected for further investigation as potential
CBHs in replacement of prohibited and unsafe commercial
herbicides to implement additional testing and application
improvements.

CONCLUSION
Chemical pesticides have toxic carcinogenic and muta-

genic effects. The use of natural bioherbicides is of great
importance  for  the  health  and  sustainability  of  the  eco-
system [56]. Using candidate natural herbicide molecules
rather than chemical herbicides is helping to cope with the
deterioration of the structure of the ecosystem. The usage
of  in-silico  methods  in  the  investigation  of  biopesticide
active molecules will make a great contribution in terms of
both  time  and  cost  in  experimental  processes.  Cuscuta
species are an important source of biotic stress for plants

Narciclasine Deoxypodophyllotoxin 3-Hydroxyuridine

PubChem CID: 72376 PubChem CID: 345501 PubChem CID: 

14330990 



10   The Open Medicinal Chemistry Journal, 2025, Vol. 19 Atalay et al.

with high agricultural importance. The main objective of
this study is to determine the natural plant chemicals that
can be used to inhibit the haustorium of Cuscuta species
that feed from the host. To achieve the desired inhibition,
the analysis was carried out using the docking and struc-
ture-activity  analyses  of  CBHs.  According  to  the  results
obtained from all analyses performed in the study, among
all  86  candidate  herbicide  molecules  for  controlling
Cuscuta  sp.,  Narciclasine,  Deoxypodophyllotoxin,  and  3-
Hydroxyuridine showed the highest binding affinity as -9.9
kcal.mol-1, -7.7 kcal.mol-1, and -7.6 kcal.mol-1, respectively
(Fig. 3). It is suggested that these molecules be evaluated
as  CBH  molecules  due  to  their  binding  affinity,  and
confirmatory  experimental  steps  should  be  carried  out.
(Fig. 3).
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