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Abstract:

Introduction: DNA intercalators are among the most clinically effective anticancer drugs, targeting topoisomerase,
a crucial enzyme that regulates DNA topology during essential cellular functions. Several topoisomerase inhibitors
are widely used in clinical oncology. However, their application is often limited due to severe side effects and dose-
dependent toxicity, necessitating continuous efforts to develop innovative and efficient therapeutic approaches. This
study aimed to perform a virtual evaluation, synthesize, and examine the in vitro cytotoxic activity of six newly
designed compounds. These compounds were derived from the hybridization of an anthraquinone scaffold with N-acyl
hydrazone and N-acyl sulfonyl hydrazide derivatives, using amino acids, specifically proline and glycine, as linkers.

Methods: The plausible inhibitory effect of the designed compounds against the topoisomerase enzyme was
evaluated in silico using Maestro software from Schrodinger. Molecular dynamics simulations were conducted to
assess compound stability and interaction behavior. Pharmacokinetic properties (ADME) were evaluated to determine
compliance with drug-likeness standards. The compounds were successfully synthesized and purified using
conventional synthetic techniques. The synthesized intermediates and final products were characterized by melting
points, TLC, FT-IR spectroscopy, 'H NMR, and "*C NMR studies.In vitro cytotoxic activity was assessed using the MTT
assay against the human colonic cancer (HCT-116) cell line.

Results: Most designed compounds exhibited higher docking scores than the reference compound, doxorubicin.
Compound 3a demonstrated good stability and favorable interaction behavior in molecular dynamics simulations. The
MTT assay revealed significant concentration-dependent inhibition of HCT-116 cell growth, with IC;, values of 15.85
M and 22.46 pM for compounds 3a and 4c, respectively.

Discussion: The results revealed appreciable cell growth inhibition and topoisomerase targeting, indicating that
anthraquinone hybrids may serve as lead structures with improved therapeutic profiles, paving the way for more
effective and less toxic anticancer agents.

Conclusions: The newly designed anthraquinone hybrids exhibited strong topoisomerase inhibitory activity and
potent cytotoxic effects, highlighting their promise for further development as anticancer agents.

Keywords: Anthraquinone, N-acyl hydrazones, Sulfonyl Hydrazides, Molecular Docking, Molecular Dynamics,
Topoisomerase Inhibitors.
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1. INTRODUCTION

Cancer is ranked as the second leading cause of death
globally [1], poses a significant obstacle to human health
and life expectancy. Despite significant advancements in
cancer treatment, including gene and immunotherapy,
chemotherapy remains a cornerstone in oncological care,
either as a standalone approach or in combination with
other modalities such as surgery and radiotherapy. The
effectiveness of conventional chemotherapeutic agents is
limited by high toxicity and resistance from cancer cells,
which underscores the urgent need for developing drugs
that are more potent and selective for cancer cells [2].

Anthraquinone derivatives, such as doxorubicin and
daunorubicin, are among the most effective chemothera-
peutic agents, exerting cytotoxic effects by interfering
with essential cellular processes [3]. These drugs target
topoisomerases, enzymes that regulate DNA topology to
maintain key cellular processes such as replication,
recombination, and chromosome condensation [4].
Topoisomerases are classified into two types based on
their mechanism: Type I cuts one DNA strand to relieve
supercoiling, while Type II cuts both DNA strands and is
divided into Topo IIa and Topo IIB subtypes [5, 6]. The
anthraquinone ring system, a crucial structural component
of anthracyclines, enables the medication to intercalate
into DNA and disrupt the helical structure. These dual
mechanisms, DNA intercalation via the anthraquinone ring
and topoisomerase II inhibition, make anthracyclines
highly effective against many cancers. However, their
clinical use is limited by dose-dependent cardiotoxicity and
drug resistance [7, 8].

The antitumor activity of anthraquinone derivatives is
highly influenced by the incorporation of various
substituents into their aromatic planar structure. Side
groups of anthraquinone derivatives stabilize electrostatic
interactions with the phosphate backbone of the
polynucleotide chain, ensuring effective inhibition of
topoisomerase II [9].

Tumor cells exhibit a significantly higher demand for
amino acids, which are essential for protein synthesis,
compared to normal cells. Thus, the study explores the
conjugation of amino acids proline and glycine with
anthraquinone derivatives to improve their solubility and
selective accumulation in tumor tissues, highlighting their
potential in cancer therapy [10]. Amino acid-based
structures represent a promising alternative to conven-
tional amino-sugars in anthraquinone derivatives, offering
a potential strategy to overcome efflux-mediated drug
resistance [11].

Schiff base-modified anthraquinone derivatives show
pivotal anticancer potential [12, 13], particularly due to
their ability to inhibit topoisomerase II [9]. Owing to their
structural features as pharmacophores and the diverse
substituents attached to them, N-acyl hydrazones exhibit
remarkable versatility in both molecular design and
biological activity [14]. Thus, introducing tautomerizable
groups, such as N-acyl hydrazone, enhances interactions
with DNA and may enable selective recognition of
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oncogenic targets. Collectively, these features contribute
to improved cytotoxicity and offer a strategy to overcome
drug resistance mechanisms [15].

Incorporating polar sulfonamide groups into
anthraquinone derivatives has demonstrated its ability to
boost their anticancer efficacy while minimizing toxicity
[16]. This is attributed largely to the fact that the
sulfonamide moiety enhances DNA binding affinity,
enabling stronger interactions with the phosphate
backbone and promoting more efficient intercalation [17].
Additionally, sulfonamide is frequently used as a
bioisostere for the carboxylic acid group in medicinal
chemistry due to its favorable physicochemical properties
[18]. As a result, this alteration in structure also improves
cellular uptake and selectivity, positioning these
conjugates as highly promising options for designing
targeted cancer candidates [19]. Building on this strategy,
researchers have found that sulfonyl hydrazide groups
have also emerged as potent pharmacophores in
anticancer drug design by enhancing cytotoxic activity. In
these contexts, sulfonyl hydrazides function as
nucleophiles, electrophiles, and radical precursors in
many tandem reactions. Reflecting this progress, over the
past decade, numerous reliable drugs have been
developed, encompassing sulfonyl hydrazides [20, 21].

Based on earlier findings, the primary objective of this
study was to design, perform docking studies, synthesize,
and conduct biological examinations on a new series of
anthraquinone derivatives. The focus was on the main
pharmacophoric features of DNA intercalators and the
anthraquinone core structure of doxorubicin.

2. MATERIALS AND METHODS

2.1. Materials and Equipment

Starting materials and reagents were procured from
multiple commercial suppliers (Macklin, TCI, Thomas
Baker, Sigma Aldrich, LOBA Chemie). All chemicals used
were of analytical grade and utilized directly, without any
additional purification steps. The progress of reactions
and the purity of compounds were monitored and verified
through thin-layer chromatography (TLC) plates from
Merck (Darmstadt, Germany, silica gel 60 F254) and
exposed to UV-254nm light. The melting points were
measured using a Stuart SMP30 melting point apparatus,
employing the one-end sealed capillary tube method.
Fourier Transform Infrared (FT-IR) spectroscopy was
performed using the Shimadzu IR Affinity-1 spectrometer
manufactured by Shimadzu (Kyoto, Japan). The 'H NMR
and "°C NMR analyses were conducted at Hamdi Mango
Center for Scientific Research (HMCSR)/ The University of
Jordan, using a Bruker 500 MHz (BioSpin GmbH,
Rheinstetten, Germany) spectrometer with deuterated
dimethyl sulfoxide (DMSO-d6) as solvent and the chemical
shifts (86) expressed in parts per million.

2.2. Molecular Docking

Molecular docking is a crucial method for identifying
potential binding sites and interactions between designed
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compounds and proteins. Glide software from
Schrodinger’s modeling suite was used to conduct the
docking investigation. The human Topoisomerase II beta
protein structure (4G0OV) was downloaded from the RCSB
Protein Data Bank (PDB) [22], and doxorubicin was used
as a reference ligand [9, 23]. The ChemDraw software
from the PerkinElmer suite was used to draw the chemical
structures of compounds, which were then optimized by
LigPrep in the Maestro suite [24]. Standard precision (SP)
docking was carried out using grid-based ligand docking
with the Glide program for all designed compounds on the
mentioned protein. The best docking poses of compounds
were ranked according to their docking score and
interactions within the Maestro interface (Schrodinger,
New York, version 2025.4).

2.3. Molecular Dynamic Simulation

We performed molecular dynamics (MD) simulations of
compound 3a to evaluate the durability and compatibility
of ligand intercalation with the DNA of the target protein
4GOV. These simulations were carried out using the
Desmond software integrated within the Maestro interface
(Schrodinger Release, 2025.4). The simulation system was
prepared using the System Builder tool, employing the
simple point charge (SPC) water model and enclosed in an
orthorhombic periodic box measuring 10 A on each side
from the outermost edge of the protein. The OPLS4 force
field was applied for system parameterization. To maintain
a neutral pH, sodium (Na*) and chloride (Cl") ions were
added for charge balancing. Simulations were performed
under NPT ensemble conditions at 300 K and 1 bar pres-
sure, with a total duration of 200 nanoseconds [25, 26].

2.4. In Silico ADME Study

In order to assess the drug-likeness of the developed
compounds, the ligands were subjected to structure-based
ADME property prediction using the QikProp tool within
Maestro software and rapid mode, with the option to
“Identify the 5 most similar drug molecules” activated
[27].

2.5. Chemical Synthesis

2.5.1. Synthesis of Ethyl (9, 10-dioxo-9, 10-
dihydroanthracene-2 carbonyl)glycinate (1a) [28]

Glycine ethyl ester HCl (0.618 g, 4.43 mmol, 1.2
equiv.) was suspended in 15 mL of dry dichloromethane
(DCM) in a 250 mL round-bottom flask and placed in an
ice bath. Triethylamine (1.23 mL, 8.86 mmol, 2 equiv.) was
added dropwise over 2 min, and the reaction mixture was
maintained at 0°C for 30 min with constant stirring.
Anthraquinone-2 carbonyl chloride 1 (1 g, 3.69 mmol, 1
equiv.) was dissolved in 30 mL of dry DCM, which was
then slowly added to the reaction mixture and stirred at
0°C for 1 h before being refluxed at 45-55°C for 3 h. TLC
monitored the completeness of the reaction. After
evaporation of the solvent, the residual precipitate was
dissolved in 15 mL of ethyl acetate, transferred to a
separatory funnel, and washed several times with distilled
water, 5% NaHCO,, and 2% HCI. The organic layer was

collected and dried. Yellow shiny powder. Yield: 92%; m.p.
186-187°C; FT-IR (cm’, str.vib.): 3294 (2° amide N-H),
3070 (aromatic C-H), 2989, 2939 (aliphatic C-H), 1743
(ester C=0), 1674 (ketone C=0), 1643 (2° amide C=0),
1593-1450 (aromatic C=C). '"H NMR (500 MHz, DMSO-d,)
59.43 (t, ] = 5.9 Hz, 1H, 2° amide N-H), 8.65 (s, 1H), 8.33
(d, 1H), 8.28 (d, 1H), 8.21 (m, 2H), 7.93 (m, 2H), 4.15 (q, J
= 7.1 Hz, 2H, ethyl CH,), 4.07 (d, J = 5.8 Hz, 2H, 2° amide
CH,), 1.22 (t, J = 7.1 Hz, 3H, ethyl CH,). °C NMR (125
MHz, DMSO-d,) 6 182.23, 170.09, 165.46, 138.76, 134.96,
133.33, 133.20, 127.50, 127.15, 125.95, 61.07, 41.92,
14.55.

2.5.2. Synthesis of N-(2-hydrazineyl-2-oxoethyl)-9,
10-dioxo-9, 10-dihydroanthracene-2-carboxamide
(2a) [29]

In a round-bottom flask, compound 1a (0.5 g, 1.48
mmol, 1 equiv.) was dissolved in 20 mL of n-butanol.
Hydrazine hydrate 100% (0.74 g, 14.8 mmol, 10 equiv.)
was then slowly added, and the reaction mixture was
refluxed at 110°C for 2 h until a precipitate formed. TLC
monitored the completeness of the reaction. The mixture
was poured into a separatory funnel and extracted with
distilled water. The organic layer was collected, filtered,
and rinsed with ether, followed by hot ethanol. White fluffy
powder. Yield: 91.5%; m.p. 245-247°C; FT-IR (cm™,
str.vib.): 3325 (1° amine N-H), 3244 (2° amides and sym
1° amine N-H), 3039 (aromatic C-H), 2931 (aliphatic C-H),
1670 (ketone C=0), 1643 (2° amides C=0), 1585-1477
(aromatic carbons C=C). '"H NMR (500 MHz, DMSO-d,) &
9.23 (s, 1H, hydrazide N-H), 9.20 (t, J = 5.9 Hz, 1H, 2°
amide N-H), 8.64 (s, 1H), 8.32 (d, J = 8.1 Hz,1H), 8.24 (d, J
= 8.0 Hz, 1H), 8.18 (m, J =3.4 Hz, 2H), 7.91 (m, J =3.6 Hz,
2H), 4.26 (s, 2H, hydrazide NH,), 3.90 (d, J = 5.9 Hz, 2H,
2° amide CH,). °C NMR (125 MHz, DMSO-d,) 6 182.60,
168.48, 165.49, 139.42, 135.14, 135.05, 133.53, 133.49,
133.44, 127.46, 127.31, 127.27, 126.25, 42.07.

2.5.3. General Procedure for the Synthesis of Glycine
Schiff Bases

Compound 2a (0.16 g, 0.5 mmol, 1 equiv.) was ground
separately with (0.74 mmol, 1.5 equiv.) (0.108 g 4-
chlorobenzaldehyde and 0.11 g 4-dimethylaminoben-
zaldehyde). The mixtures were placed in a 100 mL round-
bottom flask and dissolved in 20 mL of absolute methanol.
Four drops of glacial acetic acid were added to each, and
then the mixtures were refluxed at 65-70°C for 3 h to
obtain a precipitate of product 3a and 3b, respectively.
The precipitates were filtered and purified by washing
with hot methanol [30].

2.5.3.1. (E)-N-(2-(2-(4-chlorobenzylidene) hydraz-
ineyl)-2-oxoethyl)-9, 10-dioxo-9, 10-dihydroanthra-
cene-2-carboxamide (3a)

Yellow fluffy powder. Yield: 90%; m.p. 287-290°C; FT-
IR (cm?, str.vib.): 3367 (2° amide N-H), 3251 (N-acyl
hydrazone N-H), 3059 (aromatic C-H), 2950 (aliphatic C-
H), 1689 (ketone C=0), 1666 (2° amide and N-acyl
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hydrazone C=0), 1612 (N-acyl hydrazone C=N),
1585-1485 (aromatic carbons C=C). '"H NMR (500 MHz,
DMSO0-d,) 6 11.63 (s, 1H, N-acyl hydrazone N-H), 9.23 (t, J
= 5.9 Hz, 1H, 2° amide N-H), 8.70 (s, 1H), 8.37 (d, 1H),
8.32 (d, 1H), 8.23 (m, 2H), 8.01 (s, 1H, imine N=CH), 7.95
(m, 2H), 7.75-7.49 (m, J = 8.2 Hz, 4H), 4.49, 4.06 (d, ] =
5.8 Hz, 2H, 2° amide CH,). °C NMR (125 MHz, DMSO-d,)
6 182.63, 170.53, 165.63, 142.72, 139.37, 135.17, 133.60,
133.34, 129.37, 128.95, 127.65, 127.35, 126.06, 41.46.

2.5.3.2. (E)-N-(2-(2-(4-(dimethylamino) benzylidene)
hydrazineyl)-2-oxoethyl)-9, 10-dioxo-9, 10-dihydroan-
thracene-2-carboxamide (3b)

Purple fluffy powder. Yield: 90%; m.p. 271-274°C; FT-
IR (cm’, str.vib.): 3360 (2° amide N-H), 3240 (N-acyl
hydrazone N-H), 3066 (aromatic C-H), 2947-2812
(aliphatic C-H), 1678 (ketone C=0), 1651 (2° amide and
N-acyl hydrazone C=0), 1604 (N-acyl hydrazone C=N),
1589-1485 (aromatic C=C). "H NMR (500 MHz, DMSO-d,)
6 11.27 (s, 1H, N-acyl hydrazone N-H), 9.36, 9.19 (s, 1H,
2° amide N-H),8.71- 7.97 (m, 7H), 8.10 (s, 1H, imine
N=CH), 7.51,6.74 (m, 4H), 4.45, 4.03 (s, 2H, 2° amide
CH,), 2.96 (s, 6H, N(CH,),). °C NMR (125 MHz, DMS0-d,)
6 182.60, 169.90, 165.57, 151.78, 144.84, 139.44, 135.14,
133.55, 133.31, 128.85, 128.55, 127.61, 127.32, 126.08,
112.24, 42.60, 41.46.

2.5.4. General Procedure for the Synthesis of Glycine
Sulfonamides.

Compound 2a (0.16 g, 0.5 mmol, 1 equiv.) was ground
separately with (0.125 g 4-chlorobenzenesulfonyl chloride
and 0.123 g 4-methoxybenzenesulfonyl chloride). Then,
the mixtures were transferred to a 100 mL round-bottom
flask and dissolved in 15 mL (dry DCM). Triethylamine
(0.1 g, 1 mmol, 2 equiv.) was added to each mixture. Then
stirred at 25°C for 24 h with ongoing TLC monitoring.
Pure precipitates of compounds 4a and 4b were attained
employing column chromatography with a gradient solvent
system of DCM and methanol (100:0-97:3) [31, 32].

2.5.4.1. N-(2-(2-((4-chlorophenyl) sulfonyl) hydraz-
ineyl)-2-oxoethyl)-9, 10-dioxo-9, 10-dihydroanthr-
acene-2-carboxamide (4a)

White precipitate. Yield: 60%; m.p. 245°C
(decomposition); FT-IR (cm’, str.vib.): 3325 (2° amides N-
H), 3062 (aromatic C-H), 2935-2812 (aliphatic C-H), 1670
(ketone C=0), 1639 (2° amides C=0), 1589-1477
(aromatic C=C), 1327, 1157 (sulfonamide S=0 asym,
sym). 'H NMR (500 MHz, DMSO-d,) 6 10.32 (s, 1H, SO,-
NH), 10.06 (s, 1H, sulfonamide CO-NH), 9.23 (t, ] = 5.9
Hz, 1H, 2° amide N-H), 8.65-7.95 (m,7H), 7.83-7.59 (m, ]
= 5.7 Hz, 2H), 3.83 (d, ] = 5.9 Hz, 2H, 2° amide CH,). °C
NMR (125 MHz, DMSO-d;) & 182.66, 168.33, 165.54,
139.16, 135.21, 133.58, 133.42, 129.46, 127.57, 127.36,
127.33,126.17, 41.65.
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2.5.4.2. Synthesis of N-(2-(2-((4-methoxyphenyl)
sulfonyl) hydrazineyl)-2-oxoethyl)-9, 10-dioxo-9, 10-
dihvdroanthracene-2-carboxamide (4b)

White precipitate. Yield: 65%; m.p. 251°C
(decomposition); FT-IR (cm™”, str.vib.): 3282 (2° amides N-
H), 3062 (aromatic C-H), 2943-2835 (aliphatic C-H), 1674
(ketone C=0), 1639 (2° amides C=0), 1593-1496
(aromatic C=C), 1330, 1149 (sulfonamide S=0 asym,
sym). 'H NMR (500 MHz, DMSO-d,) 6 10.20 (s, 1H, SO,-
NH), 9.72 (s, 1H, sulfonamide CO-NH), 9.22 (t, J = 5.9 Hz,
1H, 2° amide N-H), 8.65-7.94 (m, 7H), 7.76-7.03 (m, 4H),
3.83 (d, J = 5.6 Hz, 2H, 2° amide CH,), 3.87, 3,79 (s, 3H,
OCH,). *C NMR (125 MHz, DMSO-d,) 6 182.66, 165.47,
135.19, 133.58, 133.41, 130.91, 130.34, 127.56, 127.36,
127.33,126.17, 114.49, 56.03, 41.60.

2.5.5. Synthesis of Ethyl (9, 10-dioxo-9, 10-
dihydroan-thracene-2-carbonyl) prolinate (1b) [28]

Proline Ethyl Ester HCL (0.8 g, 4.43 mmol, 1.2 equiv.)
was dissolved in 10 mL dry DCM in a 250 mL round-
bottom flask and stored in an ice bath. Triethylamine (0.75
g, 8.86 mmol, 2 equiv.) was added dropwise over 2 min,
and the reaction mixture was maintained at 0°C for 30 min
with constant stirring. Anthraquinone-2-carbonyl chloride
(compound 1) (1 g, 3.69 mmol, lequiv.) was dissolved in
30 mL of dry DCM, which was then slowly added to the
reaction mixture and stirred at 0°C for 1 h before being
refluxed at 45-55°C for 3 h. TLC monitored the complete-
ness of the reaction. After evaporation of the solvent, the
residual precipitate was dissolved in 15 mL of ethyl
acetate, transferred to a separatory funnel, and washed
several times with distilled water, 5% NaHCO,;, and 2%
HCI. The organic layer was collected and dried. Yellow
powder. Yield: 90%; m.p. 131-133°C; FT-IR (cm, str.vib.):
3051 (aromatic C-H), 2978, 2885 (aliphatic C-H), 1735
(ester C=0), 1670 (ketone C=0), 1616 (2° amide C=0),
1589, 1489 (aromatic C=C). '"H NMR (500 MHz, DMSO-d,)
6 8.28 (d, 1H), 8.23-8.21 (m, 2H), 8.03 (d, 2H), 7.95 (m,
2H), 4.54 (q, 1H, Chiral C-H), 4.17 (q, J = 7.1 Hz, 2H, ethyl
0-CH,), 3.66-3.52 (m, 2H, Pyrrolidine N-CH,), 2.35-1.88
(m, 4H, Pyrrolidine CH,-CH,), 1.24, 0.94 (t, 3H, J = 7.0 Hz,
ethyl CH,). ”C NMR (125 MHz, DMSO-d,) 6 182.50,
182.48, 172.01, 167.14, 141.81, 135.21, 135.18, 133.62,
133.51, 132.94, 127.72, 127.33, 125.47, 61.05, 59.51,
49.88, 29.37, 25.39, 14.55.

2.5.6. Synthesis of 1-(9, 10-dioxo-9, 10-dihydroan-
thracene-2-carbonyl) pyrrolidine-2-carbohydrazide
(2b) [29]

Compound 1b (1 g, 2.65 mmol, 1 equiv.) was dissolved
in 20 mL of absolute ethanol. Then, hydrazine hydrate
100% (6.33 g, 12.64 mmol, 35 equiv.) was added slowly,
and the mixture was refluxed at 70°C for 6 h. TLC ensures
the reaction completeness. The solvent was evaporated,
and the residual precipitate dissolved in chloroform,
poured into a separatory funnel, and washed with distilled
water. The organic layer was taken and solvent removed
by evaporation to dryness to get a bright orange oily
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residue, which precipitated by the addition of petroleum
ether. Orange powder. Yield: 85%; m.p. 188-190°C; FT-IR
(cm”, str.vib.): 3302 (1° amine and 2° amides N-H), 3066
(aromatic C-H), 2924 (aliphatic C-H), 1674 (ketone C=0),
1627 (2° amides C=0), 1589-1489 (aromatic C=C). 'H
NMR (500 MHz, DMSO-d,) 6 9.30 (s, 1H, hydrazide CO-
NH), 8.36 (s, 1H), 8.27 (d, 1H), 8.23 (m, 2H), 8.08 (d, 1H),
7.96 (m, 2H), 4.46 (q, 1H, Chiral C-H), 4.26 (s, 2H,
Hydrazide NH,), 3.64-3.40 (m, 2H, Pyrrolidine N-CH,),
2.22-1.82 (m, 4H, Pyrrolidine CH,-CH,). *C NMR (125
MHz, DMSO-d,) 6 182.59, 182.51, 171.23, 167.46, 142.40,
135.16, 135.13, 133.50, 133.48, 133.26, 127.45, 127.29,
125.92, 125.37, 59.75, 50.15, 30.24, 25.31.

2.5.7. Synthesis of (E)-N'-(4-bromobenzylidene)-1-(9,
10-dioxo-9, 10-dihydroanthracene-2-carbonyl) pyrro-
lidine-2-carbohydrazide (3c) [30]

Compound 2b (0.2 g, 0.55 mmol, 1 equiv.) was mixed
with 4-bromobenzaldehyde (0.153 g, 0.83 mmol, 1.5
equiv.). The mixture was transferred to a 100 mL round-
bottom flask and dissolved in 20 mL of absolute methanol.
Four drops of glacial acetic acid were added, and the
reaction mixture was refluxed at 65-70°C for 3 h to obtain
a precipitate of product 3c. TLC confirmed the
completeness of the reaction. The precipitate was filtered
and purified by washing with hot methanol. Yellow
powder. Yield: 90%; m.p. 267-269°C; FT-IR (cm™, str.vib.):
3209 (N-acyl hydrazone N-H), 3066 (aromatic C-H), 2958,
2889 (aliphatic C-H), 1670 (ketone C=0), 1627 (2° amides
C=0), 1589 (N-acyl hydrazone C=N), 1558, 1485
(aromatic C=C). '"H NMR (500 MHz, DMSO-d,) 6 11.71,
11.57 (s, 1H, N-acyl hydrazone N-H), 8.30-7.95 (m, 7H),
7.88 (s, 1H, imine N=CH), 7.66-7.13 (m, 4H), 5.41-4.55
(m, 1H, Chiral C-H), 3.76-3.54 (m, 2H, Pyrrolidine N-CH,),
2.46-1.87 (m, 4H, Pyrrolidine CH,-CH,). ®C NMR (125
MHz, DMSO-d,) 6 182.56, 182.51, 172.78, 167.24, 146.19,
142.58, 135.16, 134.11, 133.52, 133.11, 133.00, 132.31,
129.13, 128.65, 127.33, 127.04, 125.50, 59.95, 50.34,
29.46, 25.44.

2.5.8. Synthesis of N'-((9, 10-dioxo-9, 10-
dihydroanthracene-2-carbonyl) prolyl)-4-bromoben-
zenesulfonohydrazide (4c) [31, 33]

Compound 2b (0.2 g, 0.55 mmol, 1 equiv.) was
dissolved in 8 mL dry DCM in a 100 mL round-bottom
flask and placed in an ice bath. Triethylamine (0.112 g, 1.1
mmol, 2 equiv.) was added slowly, and the mixture was
left to stir for 15 min. After that, in 5 ml dry DCM 4-
bromobenzenesulfonyl chloride (0.155 g, 0.6 mmol, 1.1
equivalents) was added, and the mixture was left to stir at
25°C for 24 h until the reactions were ensured to be
complete in TLC. The resulting crude product was purified
using column chromatography with a gradient solvent
system of ethyl acetate: n-hexane (0:100 - 50:50). Beige
powder. Yield: 60%; m.p. 227°C (decomposition); FT-IR
(cm™, str.vib.): 3329, 3194 (sulfonamide N-H), 3066
(aromatic C-H), 2978 (aliphatic C-H), 1670 (ketone C=0),
1620 (2° amides C=0), 1593-1492 (aromatic C=C), 1388,

1157 (sulfonamide S=0 asym, sym). 'H NMR (500 MHz,
DMSO0-dy) 6 10.42 (s, 1H, SO,-NH), 10.13 (s, 1H, sulfonyl
hydrazone CO-NH), 8.27-7.95 (m, 7H), 7.75-7.56 (m, 4H),
4.39 (m, 1H, Chiral C-H), 3.54-3.42 (m, 2H, Pyrrolidine N-
CH,), 2.16-1.57 (m, 4H, Pyrrolidine CH,-CH,). *C NMR
(125 MHz, DMSO-d,;) 6 182.55, 170.82, 167.20, 142.05,
138.81, 133.52, 133.10, 132.26, 130.38, 127.51, 127.34,
125.78, 59.15, 30.07, 25.08.

2.6. Cytotoxicity Assay

HCT-116 colorectal cancer cells (CCL-247), purchased
from ATCC, were cultured in high-glucose medium DMEM
supplemented with 10% heated fetal bovine serum, 1% L-
glutamine, and 100 IU/mL penicillin-100 pg/mL strepto-
mycin (Euro Clone). Cells were washed with phosphate
buffer saline, then detached using 0.025% trypsin-EDTA,
centrifuged at 1000 rpm for 10 min, and re-suspended in
fresh medium. Cell viability exceeded 90% as determined
by the trypan blue exclusion method. Cells were seeded in
96-well plates at a density of 7x10° cells/well and
incubated for 24 h at 37°C in a humidified atmosphere
with 5% CO,. Tested compounds prepared from 10 mM
DMSO stock solutions and serially diluted to final
concentrations of (100, 50, 25, 12.5, 6.25, and 3 uM) (final
DMSO =<0.01%), were added to the wells and incubated
for 72 h for each. Subsequently, 15 pL of 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium  bromide (MTT)
solution (5 mg/mL in PBS) was added to each well and
incubated for 3 h to allow Formazan crystal formation. The
crystals were solubilized with 100 uL of stop solution. The
assay protocol was carried out in three technical
replicates for each concentration, and absorbance was
measured at 570 nm using a microplate reader [34]. Then
the percent cytotoxicity was calculated by using the
following equation: Cytotoxicity (%) = C - T/ C x 100,
where C denotes the average optical density of control
wells and T denotes the average optical density of treated
wells. The assay was conducted at Hamdi Mango Center
for Scientific Research (HMCSR)/ The University of
Jordan.

3. RESULTS AND DISCUSSION

3.1. Molecular Docking Study

DNA intercalators and Topoisomerase II (Topo II)
poisons exhibit three critical structural features that are
fundamental to their function: a planar polyaromatic
system, a basic group that can be ionized, and a groove-
binding side chain [35]. The rationale behind our
molecular design was based on the fusion of anthraqui-
none with the amino acids proline and glycine, which
demonstrated more favorable and additional binding
interactions compared to the amino sugars found in
anthracyclines, such as the reference compound doxo-
rubicin. Subsequently, various moieties were incorpo-
rated to produce Schiff base and sulfonamide derivatives.
The resulting scaffolds, functioning as chromophores,
were effectively integrated within the groove-binding
region and provided enhanced interactions with the
Topoisomerase II enzyme and the DNA pocket. These led
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to improved binding free energy and enhanced interaction
profiles. The corresponding docking scores are presented
in (Table 1). The root mean square deviation (RMSD)
value for the docking of the co-crystallized ligand was
1.918 A, which validates the accuracy of the docking
protocol.

Table 1. The binding free energy values (AG) in
kcal/mol of final compounds and Doxorubicin.

Compound Docking Score

3a -6.167

3b 6.878-

3c 7.836-

4a -4.379

4b -5.535

4c 8.734-
Doxorubicin -5.293

Among Schiff base derivatives, compound 3b is more
polar and exhibits a higher docking score; compound 3a
demonstrates superior biological activity, which is
attributed to its enhanced lipophilicity that facilitates
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Fig. (1). The 2D interaction diagram of compound 3a against 4GOV.
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deeper and more efficient penetration into the hydro-
phobic regions of the target binding site, thereby
improving its interaction with the biological target. This
observation underscores the critical role of physico-
chemical properties, particularly lipophilicity, in
modulating compound efficacy. Although compound 3a is
more polar than 3¢, which exhibits a higher docking score,
the larger size of the bromine atom in 3c introduces
significant steric hindrance, which can obstruct optimal
binding interactions and reduce overall biological activity.
The observed discrepancy highlights that docking scores
alone are insufficient indicators of pharmacological
potential, particularly when steric factors and physico-
chemical properties such as lipophilicity and molecular
size play critical roles in modulating target accessibility
and compound performance. Thus, compound 3a
demonstrates superior activity due to its balanced polarity
and reduced steric bulk. The two- and three-dimensional
interaction analyses of 3a (Figs. 1, 2) indicated the
formation of hydrogen bonds (H-bonds) with LYS814 and
GLN778, a n-cation interaction with ARG503, and a
chloride bond with GLU522. Figures 3, 4 show the
interactions of compounds 3b and 3c¢ within the active
site.

IF
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hydrogen bonding with GLN778 and LYS814; the yellow dotted line indicates a chloride interaction with GLU522 and a water molecule;
and the green and blue dotted lines depict n-cation and aromatic hydrogen bond interactions with ARG503, respectively.
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Fig. (4). The 2D interaction diagram of compound 3¢ against 4GOV.

In sulfonamide derivatives, a notable correlation is often
observed between molecular docking results and biological
activity. Compound 4c, which bears a bromo substituent,
consistently exhibits higher docking scores than 4a and 4b,
indicating a potentially favorable binding affinity to the
target site. However, the actual binding configuration is
influenced by several critical factors, including the mole-
cule’s orientation within the binding pocket, the steric bulk
introduced by the bromo group, and the spatial distribution
of functional groups. These structural characteristics can
significantly alter the interaction dynamics, affecting both
docking scores and binding energies (Figs. 5-7). Compound
4c (Fig. 7) formed four n-n stacking interactions with DNA
bases DC8, DT9, and DA12. It also formed an H-bond
between the sulfonamide N-H group and GLN778.

In addition, despite both proline derivatives containing
a bromine substituent, proline sulfonamide derivative 4c
exhibited superior docking scores and biological activity
compared to proline Schiff base derivative 3¢, owing to an
additional hydrogen bond formed with GLN778 (Figs. 4,
7). These findings validate the critical role of specific
functional groups in enhancing molecular interactions and
advancing pharmacological efficacy.

Figures 1, 3-8 depicts the two-dimensional inter-action
profiles of the final compounds and doxorubicin within the
Topoisomerase II-DNA complex (PDB ID: 4GOV), highligh-
sting key binding residues and interaction types.

3.2. Molecular Dynamic Simulation Analysis

Compound 3a contacts with the protein residues are
illustrated in Fig. (9). Values over 1.0 are possible as
ARG503 made multiple interactions of the same subtype
with the ligand.

3.2.1. Protein-ligand RMSD

The conformational changes in the protein and ligand
from their initial configurations during the simulation were
analyzed wusing root mean square deviation (RMSD).
The ligand RMSD result for Compound 3a, illustrated in
Fig. (10), remained below 4 A, indicating acceptable
stability of the ligand-protein interaction. This observation
is further supported by the dynamic behavior of the
complex, which exhibited noticeable fluctuations during the
initial 50 ns of the simulation, followed by a stable
trajectory with consistent structural integrity throughout
the remaining simulation period.



Evaluation of New Anthraquinone-2-Carboxylic Acid Derivatives

ASN

520
ALA "

521
' LEU
Aoy i
4 A: 506
G
e ? @

SER
A B8

GLN
ATIE

Fig. (5). The 2D interaction diagram of compound 4a against 4GOV.
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Fig. (10). The protein-ligand RMSD of compound 3a.

3.2.2. The Root Mean Square Fluctuation

The root mean square fluctuation (RMSF) also provides
valuable qualitative insights into the adaptability of resi-
dues. Protein RMSF analysis revealed that the interacting
residues exhibited fluctuations below 2 A, offering strong
evidence for the stability of the Compound 3a complex with
the 4GOV protein. Ligand RMSF below 2 A also showed
well-positioned and tightly bound 3a throughout the
simulation (Figs. 11, 12).

3.3. Pharmacokinetic Properties Evaluation
All compounds adhere fully to Lipinski's rule of five

= Lig fit Prot

without any violations (results 0, 1), indicating their
potential to be considered drug-like, and Jorgensen’s rule of
three to be orally active (all compounds with fewer or no
violations; results 0, 1). The majority of compounds
displayed zero #stars, suggesting their pharmacokinetic
profiles fall within the range observed in 95% of established
drugs. Moreover, most compounds showed good oral
absorption and an acceptable metabolic range. Finally, all
of them show a CNS inactivity score of (-2), indicating a low
likelihood of their toxicity or harmful effects on the brain
(Table 2).
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Table 2. The predicted pharmacokinetic properties of final compounds and doxorubicin.

#Metab Rule of Three Rule of Five Human Oral Absorption CNS #stars Compound
1 1 0 1 -2 1 3a
1 1 0 2 -2 2 3b
1 0 0 2 -2 0 3c
1 0 0 2 -2 0 4a
2 0 0 3 2 0 4b
1 0 1 2 -2 0 4c
9 2 3 1 -2 2 Doxorubicin

Note: #stars: A characteristics that position 95% of the compounds outside the desired features to be drug-like, Normal range: 0-5 (less is better). CNS:
Suggest central nervous system activity (-2 less activity to +2 more activity). The Human Oral Absorption: descriptor indicates possible oral absorption,
categorized as 1 (low), 2 (medium), and 3 (high) based on qualitative absorption. The Rule of Five: a value that describes the number of violations of Lipinski’s
rule MW< 500 Da, H-bond donors < 5, H-bond acceptors < 10, and a partition coefficient (log P) < 5 (Less than 4, the compound is considered drug-like). The
Rule of Three: Counts the violations of Jorgensen'’s rule (fewer than three or best to be no violations, suggesting it is orally active. #Metab: shows the number

of possible metabolic reactions.

3.4. Chemistry

The synthetic pathway for the target compounds
(scheme. 1 and scheme. 2) began with the formation of
amides by reacting glycine ethyl ester hydrochloride and
proline ethyl ester hydrochloride with anthraquinone-2-
carbonyl chloride (compound 1). This reaction was
carried out in the presence of triethylamine (TEA), which
served as a base to neutralize the hydrochloric acid
produced during the process. FT-IR analysis of the
resulting compounds 1a and 1b showed the appearance of
new bands at 1743 cm™' and 1735 cm ™', corresponding to
ester C=0 stretching vibration (str. vib.) in compounds 1a
and 1b, respectively. Additionally, bands at 1643 cm™ and
1616 cm™' were attributed to amide C=O str. vib. in
compounds la and 1b, respectively. A new band at 3294
cm™" observed in compound 1a was associated with amide
N-H str. vib. 'H NMR of the compound la was
characterized by the appearance of an amide proton signal
at 9.43 ppm.

Compounds 2a and 2b were then obtained by the
hydrazinolysis of glycine ethyl ester and proline ethyl
ester, respectively, in n-butanol and ethanol, using an
excess of hydrazine hydrate [36]. FT-IR showed the
disappearance of ester C=0 stretching vibration bands. In
addition, the appearance of new broad bands at 3325 cm™
and 3244 cm™' in compound 2a, and 3302 cm' in
compound 2b, was attributed to hydrazide NH-NH, str.
vib. "H NMR of compounds 2a and 2b was characterized
by the disappearance of COOCH,CH, protons at 4.15 ppm
and 1.22 ppm in compound 1a, and at 4.17 ppm and 1.24
ppm in compound 1b, with the appearance of new signals
indicating the success of hydrazinolysis of compounds 1a
and 1b. The signals were related to NH-NH, protons at
9.20 ppm and 3.90 ppm in compound 2a, and at 9.3 ppm
and 4.26 ppm in compound 2b, all appearing as singlets.

The final compounds 3a, 3b, and 3¢ were synthesized
by nucleophilic addition-elimination reaction via the
condensation of compounds (2a and 2b) with various
aldehydes to produce Schiff bases, also known as N-acyl
hydrazones. Glacial acetic acid was used in this step to
ensure proper protonation of the aldehyde, thereby

facilitating the condensation reaction. FT-IR analysis
showed the disappearance of hydrazide bands at 3325
cm™' and 3244 cm™', and the appearance of new bands at
3251 cm™ and 1612 cm™, and at 3240 cm™ and 1604
cm™', corresponding to the N-H and C=N stretching
vibrations of N-acyl hydrazones in compounds 3a and 3b,
respectively. Additionally, the disappearance of the
hydrazide band at 3302 cm™' and the appearance of new
bands at 3209 cm ™' and 1589 cm™' correspond to the N-H
and C=N stretching vibrations of the N-acyl hydrazone in
compound 3c. 'H NMR revealed the formation of
compounds 3a, 3b, and 3c through the disappearance of
primary amine protons CONHNH,with the appearance of
two sets of separated singlets of N-acyl hydrazones,
attributed to both the -NHN=C- and -N=CH- protons at
11.63 ppm and 8.01 ppm for compound 3a; 11.27 ppm and
8.10 ppm for compound 3b; and 11.71, 11.57 ppm and
7.88 ppm for compound 3c.

The final compounds 4a, 4b, and 4c were obtained
through the reaction of compounds (2a and 2b) with
sulfonyl chlorides to form sulfonamides, specifically N-acyl
sulfonyl hydrazide. TEA was added to prevent amine
protonation and to scavenge the HCIl formed during the
reaction. ATR-FTIR demonstrated formation of compounds
4a, 4b, and 4c through the disappearance of primary
amine and hydrazides bands at 3325 cm™" and 3244 cm™
(from 2a), and 3302 cm™' (from 2b) and the appearance of
broad bands at 3325 cm™, 3282 cm™ and at 3329 cm™’
corresponds to the formation of secondary amides in 4a,
4b and 4c, respectively. The sulfonyl derivatives 4a, 4b,
and 4c were further confirmed by the appearance of
absorption bands corresponding to S=0 str. vib. at 1327
and 1157 cm™ (4a), 1330 and 1149 cm™ (4b), and 1388
and 1157 cm™ (4c), respectively. '"H NMR revealed the
formation of compounds 4a, 4b, and 4c through the
disappearance of primary amine protons CONHNH,with
the appearance of two sets of separated singlets of
sulfonyl hydrazides, attributed to both the -CO-NHNH-
SO,- and -CO-NHNH-SO,- protons at 10.06 ppm and 10.32
ppm for compound 4a; 9.72 ppm and 10.20 ppm for
compound 4b; and 10.13 ppm and 10.42 ppm for
compound 4c.(supplementary fig S1-S30)
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3.5. In vitro Cytotoxicity Evaluation

The study of the cytotoxic effect of different Schiff
bases and sulfonamides was performed using the MTT
assay of cytotoxicity on the HCT-116 colorectal cancer cell
line. Doxorubicin was used as the reference compound due
to its structural similarity to the synthesized compounds
and its widespread application in chemotherapy; however,
Doxorubicin is effective in killing cancer cells at low
concentrations, but it is highly toxic to healthy cells at the
same concentration [37, 38].

The newly synthesized compounds demonstrated
remarkably significant cytotoxic effects, indicating a
notable capacity to inhibit cell growth in a concentration-
dependent manner (Table 3). Among them, 3a and 4c
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exhibited promising anticancer activity with IC;, values of
15.85 uM and 22.4 uM, respectively. 3a and 4c exhibit the
best interactions with the target, indicating that the
docking calculations align well with the experimental data.
The concentration-response curve of final compounds (3a,
3b, 3¢, 4a, 4b, and 4c) on HCT-116 colorectal cancer cell
line is shown in Fig. 13).

4. LIMITATIONS OF THE STUDY

This preliminary study was limited to in vitrocytotoxic
evaluation using a single cancer cell line (HCT-116). The
predicted docking and ADME results require further
validation through enzyme inhibition and in vivo studies.
Future investigations should confirm the mechanism of
action and assess selectivity toward normal cells.

Table 3. IC;, values in micro-Molar of tested AQ-derivatives against the HCT-116 colorectal cancer cell line.

IC;, (1M) Compound
15.85 3a
66.16 3b
42.11 3c
>100 4a
>100 4b
22.46 4c
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Fig. (13). The concentration-response curve of final compounds (3a, 3b, 3c, 4a, 4b and 4c) on HCT-116 colorectal cancer cell line.

CONCLUSION

In this study, six novel Schiff base and sulfonamide
derivatives of anthraquinone were successfully
synthesized and structurally characterized by FT-IR, 'H
NMR, and ’C NMR spectroscopy. All compounds exhibited
favorable drug-like properties, as indicated by acceptable
pharmacokinetic profiles obtained through virtual ADME
screening. The designed compounds generally achieved
superior docking scores and interaction modes than the
reference drug, with compounds 3a and 4c scoring -6.167

and -8.734, respectively. Cytotoxicity against the HCT-116
colorectal cancer cell line was evaluated to determine the
pharmacological potential of these molecules. According
to MTT assay results, these compounds inhibited cell
growth in a concentration-dependent manner, as
demonstrated by IC;, values of 15.85 uM for 3a and 22.46
pM for 4c. Interestingly, the structures of chlorinated
glycine Schiff base (Compound 3a) and brominated
proline sulfonamide (Compound 4c) were particularly
successful in achieving effective cancer inhibition. Overall,
these data reveal that variations in functional groups have
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a significant influence on biological activity within similar
core structures. Therefore, these newly synthesized
hybrids may represent exploitable compounds with high
therapeutic potential, suggesting a promising novel class
of topoisomerase inhibitors. Further studies will involve
additional cancer cell lines and enzymatic assays to better
explore the cytotoxicity spectrum and clarify mechanisms
of action.
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