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Abstract: ChemVassa, a new chemical structure search technology, was developed to allow rapid in silico screening of 

compounds for hit and hit-to-lead identification in drug development. It functions by using a novel type of molecular de-

scriptor that examines, in part, the structure of the small molecule undergoing analysis, yielding its “information signa-

ture.” This descriptor takes into account the atoms, bonds, and their positions in 3-dimensional space. 

For the present study, a database of ChemVassa molecular descriptors was generated for nearly 16 million compounds 

(from the ZINC database and other compound sources), then an algorithm was developed that allows rapid similarity 

searching of the database using a query molecular descriptor (e.g., the signature of atorvastatin, below). A scoring metric 

then allowed ranking of the search results.  

We used these tools to search a subset of drug-like molecules using the signature of a commercially successful statin, 

atorvastatin (Lipitor™). The search identified ten novel compounds, two of which have been demonstrated to interact with 

HMG-CoA reductase, the macromolecular target of atorvastatin. In particular, one compound discussed in the results sec-

tion tested successfully with an IC50 of less than 100uM and a completely novel structure relative to known inhibitors. In-

teractions were validated using computational molecular docking and an Hmg-CoA reductase activity assay. The rapidity 

and low cost of the methodology, and the novel structure of the interactors, suggests this is a highly favorable new method 

for hit generation. 
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INTRODUCTION: 

 The advent of target-based drug discovery, assisted by 
advances in x-ray crystallography and NMR, has left drug 
development companies suffering both from too much and 
too little information: too much information in the sense that 
the early push for target discovery has left pharma’s R&D 
drowning in potentially relevant targets and drug candidates; 
too little information in the sense that even cutting-edge in 
silico methods of compound screening failed to produce tar-
get-to-compound relational and trending data that could as-
sist in the selection of promising future candidates. At pre-
sent, the process of taking a candidate compound from a hit 
to a lead takes approximately two years and costs tens of 
millions of dollars [1-6]. Early pharmaceutical R&D is in 
need of new ways to optimize this phase of development 
using mathematically and biologically sound methods for 
identifying, ranking, and validating candidate compounds 
and their relationships to promising biological targets. Vassa 
Informatics has addressed this need with the development of  
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ChemVassa, an algorithm that allows for rapid in silico 
screening of compounds for hit and hit-to-lead identification 
in drug development. 

ISSUES AFFECTING DRUG DISCOVERY 

 The drug discovery process has undergone dramatic 
change during the last 50 years. Despite many advances, 
however, only five of 40,000 compounds tested in animals 
reach human testing. More importantly, only one in five that 
reach clinical trials is approved. Moving these compounds 
through the early stages of development represents an enor-
mous investment of time, as well as financial and human 
resources [4, 6, 7]. 

 Since the 1990’s, advances in synthetic and combinato-
rial chemistry and laboratory automation have allowed for 
high-throughput screening of compounds, affording re-
searchers a high probability of uncovering novel molecules. 
The limitation in this model, however, is the identification of 
novel targets for therapeutic intervention. Successfully mar-
keted pharmaceuticals produced using this method are pri-
marily “me too drugs”. An excellent example is the statins, 
which lower cholesterol by targeting the enzyme HMG-CoA 
Reductase [8]. Today, there are 10 marketed statins, all of 
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which share structural similarity in the HMG moiety. In 
other words, under this model, successful drug discovery 
primarily relies on identifying compounds directed against 
known targets, not on identifying new targets for treating 
human disease. Further, in spite of increased screening ca-
pacity, the rate of newly registered compounds in clinical 
trials has not kept pace [7, 9].  

 In parallel to advances in physical screening capability, 
computational approaches have been developed for identify-
ing potential drug candidates. Screening can be performed in 
silico using software to “dock” a ligand into the active site of 
a protein structure. Docking methods attempt to identify the 
optimal binding position, orientation, and molecular interac-
tions between a ligand and a target macromolecule. Given 
sufficient computational resources, these “virtual screens” 
can be performed using very large compound structure li-
braries, and yield a ligand discovery (hit rate) of two to three 
orders of magnitude greater than that of empirical screening. 
Computational approaches also permit the development of 
focused libraries. In these cases, molecular descriptors are 
used to transform chemical structures into a standard format 
that can be used for comparative searching based on a corre-
spondence of the query structure to structures in the data-
base. Such searches often yield molecules with biological 
activities similar to the query molecule. A powerful exten-
sion of the method allows researchers to limit their search 
results only to those molecules that contain a specific sub-
structure (e.g., a binding pocket or active site). Molecular 
fingerprints extend this concept by encoding molecular 
structure in a series of binary digits (bits) that represent the 
presence or absence of particular substructures in the mole-
cule. Clustering of structures can be used to identify both 
similarity and dissimilarity (diversity) within a chemical 
library [10, 11]. The incorporation of other variables or met-
rics, such as the Lipinski Rule of Five [12, 13], have been 
used to filter databases and identify compounds with drug-
like properties, thus decreasing the rate of compound attri-
tion after initial screening. 

 While these methods can be used to rapidly develop fo-
cused libraries for either virtual or empirical screening, they 
all suffer from a common problem, in that they all rely on 
structural similarity to make their evaluations. If searches are 

based on an existing marketed compound, screening of the 
resultant library will yield little novelty and potentially in-
troduce issues of intellectual property infringement. Freedom 
to operate is a critical factor in pharmaceutical development, 
without which a potential drug cannot achieve marketability. 

 The identification of novel compounds directed against 
therapeutic targets of interest remains a major focus for 
pharmaceutical and biotechnology companies. Although 
pharmaceutical budgets have increased 20-fold over the past 
two decades, the rate at which new chemical entities have 
achieved FDA approval has been on a steady decline (see 
Fig. 1 below). Many new drugs were introduced in the 1990s 
to treat previously untreated or undertreated conditions, but 
the pace of introduction has declined since 2000—in most 
years, back to levels not seen since the 1980s. The introduc-
tion of priority drugs—those that, according to the Food and 
Drug Administration (FDA), provide a “significant therapeu-
tic or public health advance”—has also slowed, from an av-
erage of more than 13 a year in the 1990s to about 10 a year 
in the 2000s. 

 Between 2004 and 2008, $40 billion in pharmaceutical 
industry revenues were at risk through patent expiration on 
just 19 products in the United States alone. Worldwide, a 
much more dramatic $72 billion stands to be lost. Those 
revenues will not be replaced primarily by new blockbusters; 
more likely, in the near future, pharma will be looking at 
products in the $500 million to $600 million range. If so, 
pharma will need 80 new molecular entities (NMEs) in the 
next four years to replace lost US revenue, and 144 to make 
up for lost revenue worldwide [1, 2, 6].  

 Two major needs therefore exist within the industry. First 
is the need to generate new chemical entities to fill the dis-
covery pipeline and address sliding productivity and poten-
tial loss of revenue. Second is the need to to shorten devel-
opment timelines.  

 ChemVassa addresses these needs through the use of 
proprietary algorithms that can search chemical databases 
and identify compounds overlooked by existing methods. 
The technology evaluates similarity utilizing a unique 
method for the identification of novel compounds that fin-
gerprints the atom and its position in the molecule, produc-

 

Fig. (1). Average Annual Approvals of New Drugs by the Food and Drug Administration, 1970 to 2008. The data, for new molecular 

entities (NMEs) only, exclude extensions and new approved uses of existing drugs. NMEs are drugs based on a molecule not used before in 

any pharmaceutical product. Priority drugs are those that, according to the Food and Drug Administration, provide a “significant therapeutic 

or public health advance.” (Source: Congressional Budget Office based on data from the FDA.) 
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ing its “signature.” This approach affects both attrition rate 
and the timelines associated with the preclinical drug discov-
ery process. Further, ChemVassa searches can be scaled to 
any size compound database, inexpensively and efficiently, 
bringing ultra-high throughput compound screening to both 
large pharmaceuticals and smaller biotechnology companies, 
enhancing both throughput and quality for small molecule 
drug discovery. 

NOVEL SCREENING METHODOLOGY 

 The formulae developed for ChemVassa to footprint 
small molecule structure content perform two crucial tasks: 
(1) quantifying a channel’s information potential (channel 
capacity: the amount of information that a channel is capable 
of transmitting); and (2) determining the amount of informa-
tion contained in a signal at the beginning or end of its 
transmission.  

 As applied in ChemVassa, the critical metric used to 
generate a profile of a target molecule considers the structure 
itself as the information channel, producing a novel metric 
for evaluating similarities and differences among com-
pounds. Therefore, the location and composition of an atom 
in a molecule can be considered as contributing to the expan-
sion of a structure (a positive value) or the compaction of a 
structure (a negative value). With the aid of structural infor-
mation, ChemVassa is able to create an abstraction of a 
molecule that shows the contribution of each atom in the 
molecule to the ability of the molecule to be compressed and 
represented as a linear string. A low or negative value means 
that a region or atom is highly compressible; a high value 
means the region or atom is hard to compress. Our research 
strongly suggests that rapid fluctuations between high and 
low values generally characterize functional surfaces, or 
other notable features of proteins and small molecules. In 
practice, this approach yields standard structure-based search 
methods and other structural fingerprinting algorithms [14].  

MATERIALS AND METHODOLOGY 

 The current study, undertaken as a validation of Chem-
Vassa, investigated the technology’s ability to identify novel 
molecules that were informationally related to a known drug, 
but still relevant as hit-to-lead compounds. It consisted of 
three phases: database searches using the information signa-
ture of an existing drug to produce a list of hits, molecular 
docking to verify binding in the top database hits, and fi-
nally, bench assays to determine reactivity in the best mod-
eled hits. The query molecular descriptor, or “signature,” 
used was for atorvastatin (Lipitor™).  

CHEMVASSA ALGORITHMS 

 The ChemVaSSA algorithm works by examining the 
overall structural and physicochemical similarity of a par-
ticular molecule. It does this from a two-fold perspective. 
First, it utilizes spatial information to locate an atom within a 
molecule. The spatial information is taken from the source 
PDB file (or converted SMILES file, e.g.). Each atom is then 
converted into a chemical lexicon value, which can in prac-
tice takes into account the valence shell content, atomic 
number, and reactivity of the atom. The location of each 
atom is compared and the reactivity measure is calculated; 

the distance average and the reactivity comparator gives the 
“G-score.” G-scores for the molecule are processed as fol-
lows: the average for connected molecules is summed and 
averaged. The result is the “M score.” The M score can be 
calculated as the average across all molecules (M1) or the 
average across the carbon chain (M2). In practice, the M1 
score is calculated and can be used as a shorthand for refer-
ring to the molecules, and the M2 score is currently not cal-
culated for common usage of the program. 

 G therefore represents whether a particular atom is en-
hancing or detracting from the information content of the 
entire molecule. M1 is the average information content at-
tainable across the entire molecule, while M2 represents, 
loosely, the information content if only the carbon backbone 
is considered (which may be desirable for peptide-specific 
studies). 

 The similarity search algorithm operates by concatenat-
ing a model’s G scores into a single bit field and then run-
ning bitwise comparisons between different models and sub-
sections of models. The number of bitwise differences be-
tween the comparator and the candidate model is used to 
assess similarity. A logarithmic scale is used to give greater 
weight to bit differences in the higher-order positions of the 
bit field.  

 The ChemVassa database contains a listing of all struc-
ture files and models loaded into the system. As each file is 
loaded, the G-score is computed and stored in the database. 
Once the file has been loaded, and all G-scores computed, 
the list of G-scores is extracted from the database. Scores are 
rounded to the nearest thousandth (which is the maximum 
resolution used in the PDB file) and scaled to convert the G-
scores from decimal to integer notation so as to avoid having 
to operate on the bitwise IEEE floating-point representation 
of the scores.  

 Once G-scores are converted to 32 bit integers, they are 
concatenated into a single linear bit field and stored in the 
ChemVassa database for easy recall. These are the signa-
tures, or molecular descriptors, that ChemVassa relies upon 
to perform its analyses. 

DATABASE SEARCH USING MOLECULAR DE-

SCRIPTOR FOR EXISTING COMPOUND 
(ATORVASTATIN) 

 We utilized the ChemVassa algorithms to search a data-
base of 5 million compounds (the entire available set of 
small molecules from RCSB, along with the “goldilocks” 
and a portion of the “drug-like” sets from the ZINC library 
[15]—a subset of our 16M compound library). Using the 
information signature of atorvastatin,we identified ten high-
quality hits for further investigation.  

 Analysis of these hits classified them into three catego-
ries based on their potential binding characteristics: (1) 
known binders, such as other statins, which would be found 
by existing methods, and serve to validate the functionality 
of the algorithm (~20%) (all statins included in the screening 
library were identified, but not all current statins were in-
cluded in the library screened); (2) false positives, which 
consisted of complete non-binders, and cases where a por-
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tion of the molecule would likely bind except could not due 
to steric hindrance within the active site of the macromole-
cule (~40%); and, (3) novel results, which were not structur-
ally similar to atorvastatin, but that appeared to be capable of 
binding HmG-CoA reductase in a manner similar to atorvas-
tatin based on molecular docking studies (~40%). 

 The novel hits did not appear to be referenced in the rele-
vant literature. Only one compound had been identified as 
having potential relevance in the biological pathways in-
volved in cholesterol metabolism. The hits, therefore, con-
tinued to molecular docking and eventual bench testing to 
further validate the ChemVassa approach. None of the com-
pounds identified as novel interactors would have been iden-
tified by standard small molecule fingerprinting methodolo-
gies, such as Tanimoto fingerprinting, or by standard struc-
tural similarity searches [16].  

MOLECULAR DOCKING VALIDATION 

 Docking was performed using the Autodock automated 
docking software. Autodock requires ligands to be in pdbqt 
format. The prepare_ligand4.py script from ADT was used 
to add hydrogens, merge non-polar hydrogens, assign partial 
charges, and define rotatable bonds for ligands [17]. When 
required, OpenBabel was used to convert file formats. Glide 
achieved similar results [18]. 

 The macromolecules were prepared from the PDB file 
using Autodock Tools (ADT). ADT was used to prepare the 
receptor coordinate files for AutoGrid and AutoDock. Grid 
dimensions were based on the identified regions of intermo-
lecular interaction of the ligand within the receptor. There-
fore, a series of trial dockings was performed to optimize 
parameters for docking. The benchmark for optimization was 
a docking pose that recapitulated binding energy and inter-
molecular contacts found in the crystallographic structure. 

 After completion of a virtual screen, the docking log file 
(.dlg) was parsed using a Python script to extract the calcu-
lated free energy of binding. These results were used to rank 
and select specific binding poses from each ligand for further 
analysis. Molecular interactions such as bond distances and 

hydrophobic interactions were calculated and displayed us-
ing Pymol, and were compared against the original ligand-
receptor data to determine binding quality. Results were then 
entered in the database, along with the docking parameters 
and associated metadata. An example result of a promising 
early hit still being pursued at the bench appears in Fig 2, 
below. 

 The best results from this phase proceeded to the next 
stage for biological screening.  

HMG-CoA REDUCTASE ACTIVITY ASSAYS 

 For purposes of the assays, 1 ml reaction contained: 100 
mM KPi (pH 6.8), 400 mM KCl, 4% DMSO (v/v), 200 uM 
NADPH, (prepared fresh daily in 100 mM KPi pH 6.8), 0.1 
mg/ml BSA, 5 mM DTT, 0.52 to 1.04 ug hHMGCR soluble 
construct (Sigma H7039) , and 8 uM (R,S) HMG-CoA. 
DMSO was excluded from Km HMG-CoA assays and IC50 as-
says of mevinolin, CVSLead1, and CVSLead2.  

 Cuvettes containing KPi, KCl, BSA, and DTT, were in-
cubated at 37 0C in the spectrophotometer for 10 minutes. 
NADPH, DMSO, and inhibitor (as needed) were added to 
the cuvette and absorbance at 340 nm was recorded and al-
lowed to stabilize (~ 2 min). HMGCR was added and al-
lowed to incubate for 2 minutes while a background was 
recorded.  

 All reactions were initiated by the addition of HMG-
CoA. It is reported that erratic results (non-linear kinetics) 
are produced when HMG-CoA is used to initiate reactions 
where a competitive inhibitor of HMG-CoA is present and 
NADPH should therefore be used to initiate the reaction [19-
21]. Reproducible results were not obtained when NADPH 
was used to initiate the reactions (with or without inhibitor) 
under the conditions described above. Data were fit by non-
linear regression analysis using GraphPad Prizm 4.  

 Cholic acid and deoxycholic acid were dissolved in 100 
mM KPi (pH 6.8). Stock solutions of drug-like compounds 
(10 mg/ml) were prepared in 100% DMSO. Mevinolin was 
used as a positive control.  

 

Fig. (2). Analysis of binding of CVSlead12 to the Hmg-CoA reductase site. Panel A shows the molecular interactions o CVSlead12 with 

the HMG-CoA reductase binding site. Panel B shows the molecular interactions of atorvastatin to the Hmg-CoA reductase site. Panel C 

shows a comparison table of interactions conserved between A and B. An asterisk indicates a critical bond found in the atorvastatin-HMG-

CoA reductase interactions. 
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RESULTS 

 We have completed testing of eight compounds received 
from Sigma-Aldrich, Ambinter, and Enamine-Real as de-
scribed in the methodology section. These compounds were 
initially identified during a screen for small molecules that 
may have function similar to atorvastatin and other statins, 
via a screen utilizing the “signature” of atorvastatin in the 
Chemvassa database. All modeled compounds underwent 
bench testing for further validation utilizing an HMG-CoA 
reductase assay screen, available from Sigma-Aldrich, and 
implemented under the guidance of Dr. Wyckoff at UMKC. 
Controls were utilized to ensure that we could duplicate the 
IC50s reported for commercially available statins. 

The compounds tested were denoted CVSlead1-8. The re-
sults were as follows: 

 We have verified experimentally that two of eight com-
pounds identified in our survey of the database were, indeed, 
capable of inhibiting the HMG-CoA reductase enzyme. Fur-
ther, one hit showed an IC50 of less than 100uM and has 
favorable properties for further drug development. Example 
IC50 curves appear in Fig. 3, below. Maximal Hill Slopes 
were all under 1.5 (using an unconstrained fit) and optimal 
fit Hill Slopes were well under 1 (using a sigmoidal dose-
response model), therefore aggregation is not suspected to 
play a role in the current results Table 1. 

 The present study has therefore yielded a highly favor-
able hit ratio, especially given the rapidity of the screening 
process (approximately 120 days); a majority of the time was 
spent actually obtaining the compounds for testing, rather 
than in the screening or testing phase. While CVSLead1 ap-
peared to inhibit HMG CoA reductase in some assays, it was 
not stable under assay conditions and did not appear to have 
properties that would be useful for further drug development. 
We conclude therefore that if we had initially prescreened 
the database using precalculated physicochemical properties, 
our hit success ratio would have increased, as compounds 
with poor solubility (e.g. CVSleads 4 and 8) would have 
been excluded. 

 We believe these results validate our screening technique 
and the Chemvassa methodology,and further, indicates the 
utility of this method for hit and hit-to-lead screening in drug 
development. 

DISCUSSION AND CONCLUSION 

 Over the course of the current study, we developed a new 
methodology for screening large amounts of small-molecule 
data for determining hits in drug discovery. This methodol-
ogy, when applied using intelligent filtering and screening 
methodologies, has produced a high hit-to-lead ratio for the 
determination of new structures that may be developed to 
inhibit a well-studied target, HmG-CoA reductase. The iden-

Table 1. Compound Testing Results 

Compound Designation Inhibits HMG-CoA? Est. IC50 Approx. Molecular Weight H-Donors 

CVSlead1 No* -- 450 3 

CVSlead2 No -- -- -- 

CVSlead3 No -- -- -- 

CVSlead4 Insoluable under assay conditions 

CVSlead5 Yes 510-764uM 280 3 

CVSlead6 Yes 73uM 300 0 

CVSlead7 No -- -- -- 

CVSlead8 Similar to CVSlead4, and presently insoluable—trials continuing 

*Solubility may be a factor for thid compound under assay conditions. 

 

 

Fig. (3). C50 Curves for CVSlead5 and CVSlead6. 
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tified structures would not have been identified by standard 
structure search or fingerprinting methods being utilized to 
date. The relatively low cost per modeled and assayed com-
pound, in addition to the rapid timeframe and novelty of re-
sults, are exceptionally favorable and speak to the general 
applicability of this emerging technology. 

ABBREVIATIONS 

HMG-CoA = 3-hydroxy-3-methylglutaryl-Coenzyme A  

KPi = potassium phosphate buffer; KCl, potas-
sium chloride;  

DMSO = dimethyl sulfoxide;  

NADPH = -nicotinamide adenine dinucleotide phos-
phate, reduced 

BSA = bovine serum albumin; DTT, dithiothreitol;  

Hhmgcr = human 3-hydroxy-3-methylglutaryl-
Coenzyme A reductase 
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