Synthesis of Oxadiazolyl, Pyrazolyl and Thiazolyl Derivatives of Thiophene-2-Carboxamide as Antimicrobial and Anti-HCV Agents

Ola H. Rizk1, 2, *, Omaima G. Shaaban1, 2, Abeer E. Abdel Wahab3
1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
2 Department of Analytical and Pharmaceutical Chemistry, Faculty of Pharmacy & Drug Manufacturing, Pharos University, Alexandria, Egypt
3 Genetic Engineering and Biotechnology Research Institute (GEBRI), Mubarak City for Scientific Research and Technology Application, Borg El-Arab, Alexandria, Egypt

Article Metrics

CrossRef Citations:
Total Statistics:

Full-Text HTML Views: 1425
Abstract HTML Views: 606
PDF Downloads: 326
ePub Downloads: 270
Total Views/Downloads: 2627
Unique Statistics:

Full-Text HTML Views: 546
Abstract HTML Views: 323
PDF Downloads: 210
ePub Downloads: 158
Total Views/Downloads: 1237

Creative Commons License
© 2017 Rizk et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt, / Department of Analytical and Pharmaceutical Chemistry, & Drug Manufacturing, Pharos University, Alexandria, 21311, Egypt, Fax: +(203)4873273 Telephone: +(203)4871317 E-mails:,

This work was presented in The XIV European Symposium on Organic Reactivity (ESOR 2013). Prague, Czech Republic, 1-6 September 2013, poster p. 38.



Three series of pyrazole, thiazole and 1,3,4-oxadiazole, derivatives were synthesized starting from 5-amino-4-(hydrazinocarbonyl)-3-methylthiophene-2-carboxamide (2).


All compounds were investigated for their preliminary antimicrobial activity. They were proved to exhibit remarkable antimicrobial activity against Pseudomonas aeruginosa with insignificant activity towards Gram positive bacterial strains and fungi.


In-vitro testing of the new compounds on hepatitis-C virus (HCV) replication in hepatocellular carcinoma cell line HepG2 infected with the virus utilizing the reverse transcription polymerase chain reaction technique (RT-PCR) generally showed inhibition of the replication of HCV RNA (–) strands at low concentration, while, eight compounds; 3a, 6, 7a, 7b, 9a, 9b, 10a and 11b proved to inhibit the replication of HCV RNA (+) and (–) strands at very low concentration range 0.08-0.36 μg/mL.


Compounds 7b and 11b displayed the highest anti-HCV and antimicrobial activities in this study.

Keywords: Synthesis, Thiophene-2-carboxamide, 1,3,4-Oxadiazole, Pyrazole, Antimicrobial activity, Antiviral activity.