REVIEW ARTICLE


A Review: Medicinally Important Nitrogen Sulphur Containing Heterocycles



Praveen K. Sharma1, *, Andleeb Amin1, M. Kumar2
1 Department of Chemistry, School of of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
2 Department of Chemistry, University of Rajasthan, Jaipur, India


Article Metrics

CrossRef Citations:
25
Total Statistics:

Full-Text HTML Views: 5862
Abstract HTML Views: 930
PDF Downloads: 1542
Total Views/Downloads: 8334
Unique Statistics:

Full-Text HTML Views: 2914
Abstract HTML Views: 563
PDF Downloads: 1225
Total Views/Downloads: 4702



Creative Commons License
© 2020 Sharma et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Chemistry, School of of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India; E-mail: pk_pandit1982@yahoo.com


Abstract

Nitrogen sulphur containing heterocycles have specific properties due to which they can be used as a potential material in a different type of industries such as medicinal/pharmaceutical, paint, packing and textile, required for various chemical, physical operations and their use as products. Especially dyes, paint, agrochemicals, medicine, etc. make them more significant. In present days, Nitrogen-Sulfur heterocycles are repeatedly attracting the interest of chemists due to their exceptional bioactive behavior. The present study is a review of the work carried out by a chemist in the discovery of new, effective, medicinally important heterocyclic compounds. The present review basically focused on nitrogen-sulfur heterocycles of potential therapeutic interest, especially with thiazole, thiazine, pyrimidine, morpholine and piperazine heterosystems, benzothiazines, pyrazole-benzothiazines, morpholine-benzothiazines, piperazine-benzothiazines and pyrimidine-benzothiazoles, mainly due to their unique structural features, which enable them to exhibit a number of biological and pharmacological activities. Due to a novel mode of action, a broad spectrum of activity, lesser toxicity towards mammalian cells, and suitable profiles towards humans have triggered the use of Nitrogen Sulphur containing heterocycles in designing and synthesizing their derivatives with better properties. The overall objective of the review is to discuss the importance of novel biodynamic structurally diverse heterocycles of potential therapeutic interest: pyrimidine, morpholine, piperazine, pyrozole, benothiazoles, pyrimidobenzothiazoles, 4H-1,4-benzothiazines, pyrazolyl-benzothiazines, morpholinyl-benzothiazines and piperazinylbenzothiazines in order to have access to important commercial molecules for the search of better future.

Keywords: Pyrimidobenzothiazoles, Morpholinylbenzothiazines pharmacophores, Antimicrobial, Antiviral, Benzothiazoles, Benzothiazines, Pyrazolylbenzothiazines, Piperainylbenzothiazines.



1. INTRODUCTION

Heterocycles are considered as the largest section of chemistry, especially organic chemistry. A greater part of the natural compounds produced by biotic component has heterocyclic rings as a constitutional part of their molecules. Different types of commercially important compounds alkaloids like vinblastine, reserpine, morphine, ellipticine, antibiotics like cephalosporin, penicillin etc., cardiac glycosides and different type of pesticides are heterocycles of meaning for animal and human health. The majority of the important advances have been developed by synthesizing new heterocycles which imitate natural products with similar biological activities. For that reason, scientists/researchers/chemist communities are on a nonstop search to develop better pesticides, pharmaceuticals, fungicides, compost material, weed killers, insecticides, etc. Heterocycles' role in biological system is very important. Biochemical processes of components of living organisms like RNA, DNA etc. are based on heterocycles. Except for this present life pattern and civilization, there are additional significant applications of heterocycles in the fields of cosmetics, additives, antioxidants, vulcanization accelerators dyestuffs, photographic material, reprography, data storage, solvents, and plastics. Eventually, heterocyclic chemistry is an infinite supply of exceptional compounds. A large number of models of carbon, heteroatoms and hydrogen, can be produced, which have various biological, physical and chemical properties [1-7]. The expansion of newly discovered processes and the planned use of recognized procedures for the development of heterocycles continue to strengthen the vast domain of organic chemistry.

A specific class of heterocycles having sulfur-nitrogen heteroatoms includes very important aromatic compounds that show physicochemical properties with significance in the development of futuristic materials such as magnets and molecular conductors. At present, interest has been promptly growing in accepting modifications and the characteristics of sulphur-nitrogen based heterocycles. Aromatic heterocycles containing Nitrogen (N) and sulfur(S) are resulting from aromatic carbocycles with the replacement of one or more carbon by a heteroatom in the ring. Whereas, the occurrence of sulfur and nitrogen atoms in the cyclic ring is usually related to the complexity and instability in the synthesis, however, the established nitrogen and sulfur containing heterocycles with significant properties have repeatedly been synthesized. On account of the availability of electrons (unshared pairs) and the distinction in electronegativity between carbon and heteroatoms, heterocycles are very significant in the cyclic molecular structures. Therefore, the nitrogen-sulphur heterocycles exhibit physicochemical properties and reactivity fairly diverse from the precursor carbocyclic compounds [8-12]. The sulphur-nitrogen heterocycles form a fascinating class of heterocycles and inviting the attention of the researchers due to their structural heterogeneity and biomedical properties. In view of the structural modifications with the presence of heteroatoms and the relationship of structures with the pharmacological and biological activities. In this review article, we focused on nitrogen-sulfur heterocycles of biological and pharmacological significance inculcating multi-dimensional structural features due to distinctiveness in substituents, heterocyclic systems and adjoined pharmacologically active functional groups for making them accessible for biological evaluation and SAR (structural activity relationship) studies. In this review, we have focused on nitrogen-sulfur heterocycles of potential therapeutic interest especially with thiazole, thiazine, pyrimidine, morpholine and piperazine heterosystems, benzothiazines, pyrazolylbenzothiazines, morpholinylbenzothiazines, piperazinylbenzothiazines and pyrimidobenzothiazoles, mainly due to their unique structural features, which enable them to exhibit a number of biological and pharmacological activities. The pharmacological/biological activities of heterocyclic compounds mainly depend on the structural specificity and the strength of interaction between a drug and receptors present in the biological system.

2. REVIEW OF LITERATURE

2.1. Medicinally Important Pyrimidine, Benzothiazole Fused Heterosystem: Pyrimidobenzothiazole

Pyrimidine and Thiazole nuclei are treated preferred structures as both these heterocyclic systems constitute the pharmacophore of diverse biological active molecules [13-19] Fig. (1). In medicinal chemistry, the therapeutic applications of pyrimidine derivatives are well known. RNA and DNA activities are based on nucleic acids Uracil, Thymine and cytosine, which have pyrimidine unit. Pyrimidine nucleus compounds acquire a wide variety of biological activities, like stavudine and zidovudine as antiHIV, sulphamethiazine trimethoprim, and sulphadiazine as antibacterial, idoxuridine and trifluoridine as antiviral, barbiturates e.g. phenobarbitone as sedative, 5-fluorouracil as anticancerprazosin and minoxidil as antihypertensive, hypnotics and anticonvulsant, thionzylamine as H1-antihistamine, and fervennuline and toxoflavin as antibiotics, propylthiouracil as antithyroid, sulphadoxin as antimalarial and antibacterial, etc [20]. Pyrimidine and their derivatives are very well known anti-inflammatory, analgesic and antipyretic agents [21-33].

In the same way, substituted benzothiazoles show interesting biological activities, like antiviral, anti-inflammatory, anticonvulsant, antitumor, antimicrobial and antagonists, etc [34-45]. The adjoining of one biodynamic heterocyclic system with another biodynamic heterosystem results in a molecule with structural variability and improved pharmacological activity. The fusion of heterosystems has been proven to be useful and attractive for the design of new molecular framework of therapeutically interesting drugs. With the object of discovery of exploring new heterocyclic therapeutics, we focused on pyrimidobenzothiazoles, a new class of heterocycles, incorporating two pharmacologically important heterocyclic systems, benzothiazole and pyrimidine [46-56].

Pyrimidobenzothiazoles reportedly exhibited an extensive choice of pharmacological and biological activities such as anticonvulsant [57], anti-inflammatory [58], antitumor [59], etc. Pyrimidobenzothiazoles can also act as GABA receptor binding agents [60-62].

2.2. Biodynamic Heterosystem: Benzothiazine and their Derivatives

Benzothiazines are structural analogues of phenothiazines [63-69] and exhibit similar structural flexibility along with structural specificity, fold along nitrogen and sulfur axis, as in phenothiazines. The direction of folding and the magnitude of folding angle depend to a larger extent on the position as well as the type of the other substituents on the ring system, which consequently affect the therapeutic activities considerably. The structural specificity along nitrogen-sulfur axis in phenothiazines and 4H-1,4-benzothiazines has been considered as a significant factor to be responsible for their activities and made both the series important from not only structural point of view but also from pharmacological as well as industrial view point [70-72]. The structural presentation of phenothiazine and 4H-1,4-benzothiazine ring systems according to Gordon’s model is presented to show the structural similarity of both the heterosystems Fig. (2).

Benzothiazines have also been established for their pharmacological/biological behavior such as antihypertensive [73], antiinflammatory [74], antianginal [75], antihistaminic [76], antipsychotic [77], antiemetic [78], neuroleptic [79], antibacterial [80], antioxidant properties [81], etc. 4H-1,4-Benzothiazines have also been used as colour photographic developers and dye stuffs in the industry [82-84]. Some 4H-1,4-benzothiazines along with their biopharmaceutical activities are presented in Table 1.

Fig (1). Pyrimidobenzothiazole.

Fig (2). Gordon’s model.

Table 1. Pharmacological activities of Nitrogen-Sulphur containing heterocycles.
Nitrogen-Sulphur Containing Heterocycles Activity Reference
Vasorelaxant/ KATP-Channel Openers [85]
Anti-rheumatic
Anti-proliferate
[86]
Vasorelaxant [87]
Antidiabetic [88]
KATP Channel
Openers
Vasorelaxant
[89]
Apoptosis [90]
Intercellular adhesion molecule-I (Icam-I) [91]
Intercellular adhesion molecule-I (Icam-I) [92]
Anti-inflammatory [93]
Antimalarial (Against a rodent malaria parasite Plasmodium berghei) [94]
Lipoxygenase inhibitor [95]
Antimicrobial (Antibacterial activity against Bacillus subtilis, Bacillus mega, Escherichia coli, Aspergillus arogens and antifungal activity against Aspergillus awamori) [96]
Anti-Candida [97]
Antifungal against Candida albicans [98]
Antagonistic [99]
Antibacterial against Staphylococcus aureus [100]
Antibacterial against Neisseria gonorrhoea [101]
Antimicrobial against Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis and Enterococcus faecium [102]
Antimicrobial against Staphylococcus aureus, Streptococcus pneumoniae [103]
Anti-autoimmune [104]
Antitumor, anti HIV [105]
Natural pigments [106]
Antimicrobial against S. aureus [107]
Renin Inhibitor [108]
Antiviral against zika virus [109]
Anti-inflammatory [110]
Antimicrobial against staphylococci, pneumococci and enterococci [111]
Kinase Inhibitor [112]
Gaba Brian receptor [113]
Antimicrobial against Staphylococcus, Enterococcus, Streptococcus, Haemophilus, Moraxella, Escherichia, Mycobacterium, Mycoplasma, Pseudomonas, Chlamydia, Rickettsia, Klebsiella, Shigella, Salmonella, Bordetella, Clostridium, Helicobacter, Campylobacter, Legionella or Neisseria. [114]
Antibacterial [115]
Anti-obesity [116]

2.3. Pharmaceutically Important Pyrazole Derivatives: Pyrazolylbenzothiazine

Pyrazole derivatives, a set of hererocycles, occupy a significant place in pesticide and medicinal chemistry by means of a large collection of bioactivities. Pyrazole derivatives are well known and reported to show antibacterial, fungicidal, herbicidal, antimicrobial, antiinflammatory, and anticancer activities [117-127]. Pyrazophos, the fungicide was marketed by Hoechst AG in1974, which have the ability to control powdery mildew in vegetables. The significance like a novel mode of action, broad spectrum of activity, lesser toxicity towards mammalian cells, and suitable profiles towards humans have triggered the use of pyrazole in designing and synthesizing its derivatives with better properties. Recently, pyrazole compounds, like pyraclostrobin (BASF, 2001) and penthiopyrad (Mitsui Toatsu Chemicals, 1995), are found to be latent antifungal agents for the control of various plant diseases. In recent years, researchers have given considerable attention to the synthesis of pyrazole and their derivatives due to their wide ranging bioactivities obtained through modification of structural profile by a change of the substituents in pyrazole ring [128].

In view of the structural relationship with bioactivities, the synthesis of substituted 1,4-benzothiazines Fig. (3), incorporating both benzothiazine and pyrazole heterosystems with this assumption that the synthesized heterocycles will exhibit better features caused by co-existence of two types of pharmacophoric interactions with different action of mechanism have also been reported.

2.4. Medicinally Important Morpholine/Piperazine and their Derivatives: Morpholinyl/Piperazinylbenzothiazines

The systems containing morpholine fragments have attracted interest as potential biologically active compounds [129-135]. Morpholines show a wide spectrum of properties varying from medicinal field applications to agricultural use [136]. Reboxetine acts as an antidepressant drug and is applied to treat panic disorder, clinical depression, hyperactivity disorder [137]. Fenpropimorph is a broadly used leaf fungicide and is predominantly used to limit fungal diseases in cereals [138]. Trioxazine, ofloxacin, ethmosine, dextromoramide, etc. containing morpholine nucleus have also found their applications in medicine. Morpholine derivatives have been the area of interest for the pharmaceutical industry as these act as bioactive compounds and effective substrates for further elaboration. In this regard, a number of patents elucidating the biological significance of such compounds have been published [139-143]. The literature survey reveals that the compounds with morpholine Fig. (4) show enormous therapeutic uses that include antimalarial [144], antibacrerial [145], antimicrobial [146], anticonvulsant agents, antidepressant [147], lukemia [148], tranqulizer s [149] and antituberculous agents [150].

Similarly, the piperazine ring is a preferrable heterosystem in medicinal-pharmaceutical chemistry and is frequently found in the structure of various enzyme inhibitors as well as clinical therapeutics [151]. Piperazine and its derivatives act as useful synthetic building blocks and have been regularly used in the preparation of important biologically active compounds. Piperazine and its derivatives have also been shown to exhibit a wide spectrum of pharmacological and biological activities such as, antibacterial [152, 153], antineoplastic [154], antinociceptive [155], antimalarial [156], antiproleferative activity [157], Na channel blocker [158], antitumor [159], antagonistic [160], antimicrobial [161], etc.

Taking into account the significance of piperazine scaffold in a wide range of applications [162-174], we apprehended that it might be worthwhile to incorporate the piperazine heterosystem alongwith 1,4-benzothiazine Fig. (5), to synthesize therapeutically interesting heterocycles with structural diversity [175-179].

Fig (3). Pyrazolylbenzothiazine.

Fig (4). Morpholinylcarbonyl-4H-1,4-benzothiazines.

Fig (5). Piperazinylcarbonyl-4H-1,4-benzothiazines.

CONCLUSION

Literature reveals that nitrogen and sulphur containing heterosystems are truly important for the development of human and associated society. These heterosystems play an important and key role in curing process against life threating diseases, which directly influence the growth of humans and animals. The overall objective of the review is to discuss the importance of novel biodynamic structurally diverse heterocycles of potential therapeutic interest, pyrimidine, morpholine, piperazine, pyrozole, benothiazoles, pyrimidobenzothiazoles, 4H-1,4-benzothiazines, pyrazolyl-benzothiazines, morpholinyl-benzothiazines and piperazinylbenzothiazines in order to have access to important commercial molecules for the search of better future.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] Katritzky, A.R.; Rees, C.W. Comprehensive Heterocyclic Chemistry., (1st ed. ), 1984,
[2] Katritzky, A.R.; Rees, C.W.; Scriven, E.F.V. Comprehensive Heterocyclic Chemistry., (2nd ed. ), 1996,
[3] Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[4] Martins, M.A.P.; Cunico, W.; Pereira, C.M.P.; Flores, A.F.C.; Bonacorso, H.G.; Zanatta, N. 4-Alkoxy-1,1,1- Trichloro-3-Alken-2-ones: Preparation and applications in heterocyclic synthesis. Curr. Org. Synth., 2004, 1, 391-403.
[5] Druzhinin, S.V.; Balenkova, E.S.; Nenajdenko, V.G. Recent advances in the chemistry of α,β-unsaturated trifluoromethylketones. Tetrahedron, 2007, 63, 7753-7808.
[6] Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[7] Xu, J.; Stevenson, J. Drug-like index: A new approach to measure drug-like compounds and their diversity. J. Chem. Inf. Comput. Sci., 2000, 40(5), 1177-1187.
[8] Marcos, C.F.; Polo, C.; Rakitin, O.A.; Rees, C.W.; Torroba, T. From Hunig’s Base to Bis([1,2]dithiolo)-[1,4]thiazines in One Pot: The Fast Route to Highly Sulfurated Heterocycles. Angew. Chem., 1997, 36, 281-283.
[9] Marcos, C.F.; Polo, C.; Rakitin, O.A.; Rees, C.W.; Torroba, T. One-pot synthesis and chemistry of bis[1,2]dithiolopyrroles. Chem. Commun. (Camb.), 1997, 9, 879-880.
[10] Marcos, C.F.; Rakitin, O.A.; Rees, C.W.; Torroba, T.; White, A.J.P.; Williams, D.J. Tertiary amine-S2Cl2 chemistry: interception of reaction intermediates. Chem. Commun. (Camb.), 1998, 4, 453-454.
[11] Marcos, C.F.; Rakitin, O.A.; Rees, C.W.; Torroba, T.; White, A.J.P.; Williams, D.J. Bis[1,2]dithiolo[3,4-b][4′,3′-e][1,4]thiazine-3,5-dione, a planar 1,4-thiazine. Chem. Commun. (Camb.), 1999, 1, 29-30.
[12] García-Valverde, M.; Pascual, R.; Torroba, T. Synthesis, chemistry, and dynamic NMR study of new atropisomeric 4-dialkylamino-5-chloro-1,2-dithiole-3-thiones. Org. Lett., 2003, 5(6), 929-932.
[13] Kappe, C.O. 100 years of the biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49, 6937-6963.
[14] Dandia, A.; Khaturia, S.; Sarawgi, P.; Jain, A. One-Pot Three-Component Condensation Reaction in Water: An Efficient and Improved Procedure for the Synthesis of Pyrimido[2,1-b]benzothiazoles. Phosphorous Sulphur, 2007, 182, 2529-2539.
[15] Varma, R.S. Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chem., 1999, 1, 43-45.
[16] Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem., 1991, 34(2), 806-811.
[17] Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[18] Khania, F.L.; Sillinietse, G.O.; Ozel, G. Dabur.; Ozel, Ya. Ya.; Yakimenis, A. A. Khim.Pharm. Zh, 1998, 78, 1321.
[19] Cho, H.; Ueda, M.; Shima, K.; Mizuno, A.; Hayashimatsu, M.; Ohnaka, Y.; Takeuchi, Y.; Hamaguchi, M.; Aisaka, K.; Hidaka, T. Dihydropyrimidines: novel calcium antagonists with potent and long-lasting vasodilative and antihypertensive activity. J. Med. Chem., 1989, 32(10), 2399-2406.
[20] Belema, M.; Bunker, A.; Nguyen, V.; Beaulieu, F.; Ouellet, C.; Marinier, A.; Roy, S.; Yung, X.; Zhang, Y.; Zuci, C. PCT Int. Appl. WO 2003084, Through. Chem. Abstr., 2003, 139337987x
[21] Pirisino, R.; Bianchini, F.; Banchelli, G.; Ignesti, G.; Raimondi, L.; Pecori-Vettori, L.; Rafanelli, D. Pharmacological activity of FPP028 (2-phenylpyrazolo-4-ethyl-4,7-dihydro [1,5a]pyrimidin-7-one) a new non-steroid anti-inflammatory agent. Pharmacol. Res. Commun., 1986, 18(3), 241-256.
[22] Modica, M.; Santagati, M.; Santagati, A.; Cutuli, V.; Mangano, N.; Caruso, A. Synthesis of new [1,3,4]thiadiazolo[3,2-a]thieno[2,3-d]pyrimidinone derivatives with antiinflammatory activity. Pharmazie, 2000, 55(7), 500-502.
[23] Cenicola, M.L.; Donnoli, D.; Stella, L.; De Paola, C.; Costantino, M.; Abignente, E.; Arena, F.; Luraschi, E.; Saturnino, C. Research on heterocyclic compounds. Antiinflammatory activity of some imidazo(1,2-c)pyrimidine derivatives. Pharmacol. Res., 1990, 22(Suppl. 3), 80-81.
[24] Nargund, L.V.G.; Badiger, V.V.; Yarnal, S.M. Synthesis and antimicrobial and anti-inflammatory activities of substituted 2-mercapto-3-(N-aryl)pyrimido[5,4-c]cinnolin-4-(3H)-ones. J. Pharm. Sci., 1992, 81(4), 365-366.
[25] Cottam, H.B.; Wasson, D.B.; Shih, H.C.; Raychaudhuri, A.; Di Pasquale, G.; Carson, D.A. New adenosine kinase inhibitors with oral antiinflammatory activity: synthesis and biological evaluation. J. Med. Chem., 1993, 36(22), 3424-3430.
[26] Bruni, F.; Costanzo, A.; Selleri, S.; Guerrini, G.; Fantozzi, R.; Pirisino, R.; Brunelleschi, S. Synthesis and study of the anti-inflammatory properties of some pyrazolo[1,5-a]pyrimidine derivatives. J. Pharm. Sci., 1993, 82(5), 480-486.
[27] Tozkoparan, B.; Ertan, M.; Kelicen, P.; Demirdamar, R. Synthesis and anti-inflammatory activities of some thiazolo[3,2-a]pyrimidine derivatives. Farmaco, 1999, 54(9), 588-593.
[28] Lee, C.H.; Jiang, M.; Cowart, M.; Gfesser, G.; Perner, R.; Kim, K.H.; Gu, Y.G.; Williams, M.; Jarvis, M.F.; Kowaluk, E.A.; Stewart, A.O.; Bhagwat, S.S. Discovery of 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, an orally active, non-nucleoside adenosine kinase inhibitor. J. Med. Chem., 2001, 44(13), 2133-2138.
[29] Boyle, D.L.; Kowaluk, E.A.; Jarvis, M.F.; Lee, C.H.; Bhagwat, S.S.; Williams, M.; Firestein, G.S. Anti-inflammatory effects of ABT-702, a novel non-nucleoside adenosine kinase inhibitor, in rat adjuvant arthritis. J. Pharmacol. Exp. Ther., 2001, 296(2), 495-500.
[30] Molina, P.; Aller, E.; Lorenzo, A.; López-Cremades, P.; Rioja, I.; Ubeda, A.; Terencio, M.C.; Alcaraz, M.J. Solid-phase synthesis and inhibitory effects of some pyrido[1,2-c]pyrimidine derivatives on leukocyte formations and experimental inflammation. J. Med. Chem., 2001, 44(6), 1011-1014.
[31] Vidal, A.; Ferrándiz, M.L.; Ubeda, A.; Acero-Alarcon, A.; Sepulveda-Arques, J.; Alcaraz, M.J. Effect of some hexahydroimidazo[1,2-c]pyrimidines in inflammatory responses involving leucocytes and macrophages. J. Pharm. Pharmacol., 2001, 53(10), 1379-1385.
[32] Bruno, O.; Brullo, C.; Ranise, A.; Schenone, S.; Bondavalli, F.; Barocelli, E.; Ballabeni, V.; Chiavarini, M.; Tognolini, M.; Impicciatore, M. Synthesis and pharmacological evaluation of 2,5-cycloamino-5H-[1]benzopyrano[4,3-d]pyrimidines endowed with in vitro antiplatelet activity. Bioorg. Med. Chem. Lett., 2001, 11(11), 1397-1400.
[33] Bahekar, S.S.; Shinde, D.B. Synthesis and anti-inflammatory activity of some [2-amino-6-(4-substituted aryl)-4-(4-substituted phenyl)-1,6-dihydropyrimidine-5-yl]-acetic acid derivatives. Acta Pharm., 2003, 53(3), 223-229.
[34] Sawhney, S.N.; Bhutani, S. Dharamvir. Synthesis of some 2 - (2 - Benzothiazolyl) - 6 2 - (2 - Benzimidazolyl) - 6 - aryl -4,5- dihydro - 3 (211 -) pyridazinones as potential anti-flamatory agents. Indian J. Chem., 1987, 26B, 348-350.
[35] Singh, S.P.; Vaid, R.K. Synthesis and anti-inflammatory activity of some 2-(4′-butyl-3′,5′-dimethylpyrazol-1‘yl)-6-substituted benzothiazoles and 4-butyl-1-(6’-substituted-2′-benzothiazolyl)-3-methylpyrazol-5-ones. Indian J. Chem., 1986, 25B, 288-291.
[36] Paramashivappa, R.; Phani Kumar, P.; Subba Rao, P.V.; Srinivasa Rao, A. Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(4), 657-660.
[37] Dogruer, D.S.; Unlu, S.; Sahin, M.F.; Yesilada, E. Synthesis of (2-benzothiazolone-3-yl and 2-benzothiazolone-3-yl) acetic acid derivatives and Evaluation of their Antinocioceptive and Anti-inflammatory Activity. Farmaco, 1998, 53, 80.
[38] Diouf, O.; Depreux, P.; Lesieur, D.; Poupaert, J.H.; Caignard, D.H. Synthesis and evaluation of new 2-piperazinylbenzothiazoles with high 5-HT1A and 5-HT3 affinities. Eur. J. Med. Chem., 1995, 30, 715-719.
[39] Nagarajan, S.R.; De Crescenzo, G.A.; Getman, D.P.; Lu, H.F.; Sikorski, J.A.; Walker, J.L.; McDonald, J.J.; Houseman, K.A.; Kocan, G.P.; Kishore, N.; Mehta, P.P.; Funkes-Shippy, C.L.; Blystone, L. Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Bioorg. Med. Chem., 2003, 11(22), 4769-4777.
[40] Jimonet, P.; Audiau, F.; Barreau, M.; Blanchard, J.C.; Boireau, A.; Bour, Y.; Coléno, M.A.; Doble, A.; Doerflinger, G.; Huu, C.D.; Donat, M.H.; Duchesne, J.M.; Ganil, P.; Guérémy, C.; Honor, E.; Just, B.; Kerphirique, R.; Gontier, S.; Hubert, P.; Laduron, P.M.; Le Blevec, J.; Meunier, M.; Miquet, J.M.; Nemecek, C.; Mignani, S. Riluzole series. Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J. Med. Chem., 1999, 42(15), 2828-2843.
[41] Siddiqui, N.; Pandeya, S.N.; Sen, A.P.; Singh, G.S. A series of benzothiazolyl guanidiness were synthesized for there significant anticonvulsant actinity. Pharmak Eftiki, 1992, 4, 121.
[42] Singh, S.P.; Misra, R.S.; Parmar, S.S.; Brumleve, S.J. Synthesis of 2-(4-arylthiosemicarbazidocarbonylthio)benzthiazoles and their monoamine oxidase inhibitory and anticonvulsant properties. J. Pharm. Sci., 1975, 64(7), 1245-1247.
[43] Ucar, H.; Van derpoorten, K.; Cacciaguerra, S.; Spampinato, S.; Stables, J.P.; Depovere, P.; Isa, M.; Masereel, B.; Delarge, J.; Poupaert, J.H. Synthesis and anticonvulsant activity of 2(3H)-benzoxazolone and 2(3H)-benzothiazolone derivatives. J. Med. Chem., 1998, 41(7), 1138-1145.
[44] Oketani, K.; Nagakura, N.; Harada, K.; Inoue, T. In vitro effects of E3040, a dual inhibitor of 5-lipoxygenase and thromboxane A(2) synthetase, on eicosanoid production. Eur. J. Pharmacol., 2001, 422(1-3), 209-216.
[45] Sreenivasa, M.V.; Nagappa, A.N.; Nargund, L.V.G. Various benzothiazolotriazole derivatives possess good microbial activity. Indian J. Heterocycl. Chem., 1998, 8, 23-27.
[46] Gopkumar, P.; Shivakumar, B.; Jayachandran, E.; Nagappa, A.N.; Nargund, L.V.G.; Gurupadaiah, B.M. Synthesis and biological activity of 6-fluoro-7-(substituted)-(2-Np-anilino sulphonamido) benzothiazoles. Indian J. Heterocycl. Chem., 2001, 11, 39-42.
[47] Ojha, K.G.; Jaisinghani, N.; Tahiliani, H. Synthesis and biological activity of N-phenyl-3-methyl-4-(benzothiazo-2′-carboxamido)-5-aryl-2-pyrazolines. J. Indian Chem. Soc., 2002, 79, 191.
[48] Bhawsar, S.B.; Mane, D.V.; Sinde, D.B.; Shingare, M.S.; Deokate, A.S.; Congwane, L.V. Synthesis of some 8-[6′-substituted-1′, 3′-benzothiazol-2′-yl) amino methyl] substituted hydroxyl coumarins and Evaluation of their antibacterial activity. Indian J. Heterocycl. Chem., 1996, 8, 23-26.
[49] Barde, A.R.; Barsu, K.H.; Bobade, A.S. Indian Drugs, 1998, 35, 554.
[50] O’Brien, S.E.; Browne, H.L.; Bradshaw, T.D.; Westwell, A.D.; Stevens, M.F.; Laughton, C.A. Antitumor benzothiazoles. Frontier molecular orbital analysis predicts bioactivation of 2-(4-aminophenyl)benzothiazoles to reactive intermediates by cytochrome P4501A1. Org. Biomol. Chem., 2003, 1(3), 493-497.
[51] Trapani, V.; Patel, V.; Leong, C.O.; Ciolino, H.P.; Yeh, G.C.; Hose, C.; Trepel, J.B.; Stevens, M.F.; Sausville, E.A.; Loaiza-Pérez, A.I. DNA damage and cell cycle arrest induced by 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203, NSC 703786) is attenuated in aryl hydrocarbon receptor deficient MCF-7 cells. Br. J. Cancer, 2003, 88(4), 599-605.
[52] Monks, A.; Harris, E.; Hose, C.; Connelly, J.; Sausville, E.A. Genotoxic profiling of MCF-7 breast cancer cell line elucidates gene expression modifications underlying toxicity of the anticancer drug 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole. Mol. Pharmacol., 2003, 63(3), 766-772.
[53] Bradshaw, T.D.; Trapani, V.; Vasselin, D.A.; Westwell, A.D. The aryl hydrocarbon receptor in anticancer drug discovery: friend or foe? Curr. Pharm. Des., 2002, 8(27), 2475-2490.
[54] Bradshaw, T.D.; Bibby, M.C.; Double, J.A.; Fichtner, I.; Cooper, P.A.; Alley, M.C.; Donohue, S.; Stinson, S.F.; Tomaszewjski, J.E.; Sausville, E.A.; Stevens, M.F. Preclinical evaluation of amino acid prodrugs of novel antitumor 2-(4-amino-3-methylphenyl)benzothiazoles. Mol. Cancer Ther., 2002, 1(4), 239-246.
[55] Shi, D.F.; Bradshaw, T.D.; Chua, M.S.; Westwell, A.D.; Stevens, M.F.G. Antitumour benzothiazoles. Part 15: The synthesis and physico-chemical properties of 2-(4-aminophenyl)benzothiazole sulfamate salt derivatives. Bioorg. Med. Chem. Lett., 2001, 11(8), 1093-1095.
[56] Hutchinson, I.; Chua, M.S.; Browne, H.L.; Trapani, V.; Bradshaw, T.D.; Westwell, A.D.; Stevens, M.F.G. Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl)benzothiazoles. J. Med. Chem., 2001, 44(9), 1446-1455.
[57] Gineinah, M.M.M. 6-, 7- And 8-(5-Aryl-1-Phenyl-2-Pyrazolin-3-ly)Imidazo- and Pyrimido[2,1-b]Benzothiazoles as Novel Antoconvulsant Agents. Sci. Pharm., 2001, 69(1), 53-61.
[58] Russo, F.; Romeo, G.; Santagati, N.A.; Caruso, A.; Cutuli, V.; Amore, D. Synthesis of new thienopyrimidobenzothiazoles and thienopyrimidobenzoxazoles with analgesic and antiinflammatory properties. Eur. J. Med. Chem., 1994, 29, 569-578.
[59] Zimmermann, J.; Bauer, H.H.; Hohorst, H.J.; Voelcker, G. Synthesis of 1-aldofosfamide-perhydrothiazines. Arzneimittelforschung, 2000, 50(9), 843-847.
[60] Landreau, C.; Deniaud, D.; Evain, M.; Reliquet, A.; Meslin, J.C. Efficient regioselective synthesis of triheterocyclic compounds: imidazo[2,1-b]benzothiazoles, pyrimido[2,1-b]benzothiazolones and pyrimido[2,1-b]benzothiazoles. J. Chem. Soc., Perkin Trans., 2002, 1, 741-745.
[61] Ai, J.; Wang, X.; Wahe, H.; Fomum, Z.T.; Sterner, O.; Nielsen, M.; Witt, M.R. 2-Oxo-2H-Pyrimido[2,1-b]benzothiazoles inhibit brain benzodiazepine receptor binding in vitro. Pharmacology, 2000, 60(4), 175-178.
[62] Trapani, G.; Franco, M.; Latrofa, A.; Carotti, A.; Genchi, G.; Serra, M.; Biggio, G.; Liso, M. Synthesis and benzodiazepine receptor binding of some imidazoand pyrimido[2,1-b]benzothiazoles. Eur. J. Med. Chem., 1996, 31, 575-587.
[63] Gupta, R.R. Synthetic and spectral investigation of fluorinated phenothiazines and 4H-1,4-benzothiazines as potent anticancer agents. J. Fluor. Chem., 1993, 62, 191-200.
[64] Gupta, R.R.; Kumar, M.; Gupta, V. Heterocyclic Chemistry, (1st ed. ), 1998,
[65] Gupta, R.R.; Kumar, M.; Gupta, V. Heterocyclic Chemistry., (2nd ed. ), 1999,
[66] Varga, J.M.; Kalchschmid, G.; Klein, G.F.; Fritsch, P. Mechanism of allergic cross-reactions-I. Multispecific binding of ligands to a mouse monoclonal anti-DNP IgE antibody. Mol. Immunol., 1991, 28(6), 641-654.
[67] Metwally. M.A.; El-Hossini, M.S.; El-Alblak F.Z.; Khalil, A.M. Pharmazie., Synthesis of condensed heterocycles from 3-aryl-2,4-dicarbethoxy-5-methylcyclohexanones and their testing for antimicrobial activity. 1992, 47(5), 336-339.
[68] Li, H.; Dryhurst, G. Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1): A putative nigral endotoxin of relevance to Parkinson’s disease. J. Neurochem., 1997, 69(4), 1530-1541.
[69] Kobayashi, T.; Strobeck, M.; Schwartz, A.; Mori, Y. Inhibitory effects of a new neuroprotective diltiazem analogue, T-477, on cloned brain Ca2+ channels expressed in Xenopus oocytes. Eur. J. Pharmacol., 1997, 332(3), 313-320.
[70] Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science, 2000, 287(5460), 1964-1969.
[71] Teague, S.J.; Davis, A.M.; Leeson, P.D.; Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. Engl., 1999, 38(24), 3743-3748.
[72] Armstrong, R.W.; Combs, A.P.; Tempest, P.A.; Brown, S.D.; Keating, T.A. Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res., 1996, 29, 123-131.
[73] Cecchetti, V.; Schiaffella, F.; Tabarrini, O.; Fravolini, A. (1,4-Benzothiazinyloxy)alkylpiperazine derivatives as potential antihypertensive agents. Bioorg. Med. Chem. Lett., 2000, 10(5), 465-468.
[74] Turk, C.F.; Egli, P.; Krapcho, J. Synthesis and antiinflammatory activity of the sulfoxides of 4-(3-(dimethylamino)propyl)-3,4-dihydro-2-(1-hydroxyethyl)-3-phenyl-2h -1,4-benzothiazine. J. Heterocycl. Chem., 1977, 14, 1135-1137.
[75] Kanda, A.; Hashimoto, H. Effects of semotiadil fumarate, a novel calcium antagonist, on blood pressure and heart rate in conscious spontaneously hypertensive rats. Jpn. J. Pharmacol., 1993, 63(1), 121-124.
[76] Sugimoto, Y.; Tarumi, T.; Zhao, Q.E.; Fujii, Y.; Kamei, C. Effects of antiallergic drugs on histamine release from rat peritoneal mast cells induced by bradykinin. Methods Find. Exp. Clin. Pharmacol., 1998, 20(6), 457-462.
[77] King, D.J.; Wager, E. Haematological safety of antipsychotic drugs. J. Psychopharmacol. (Oxford), 1998, 12(3), 283-288.
[78] Williams, P.I.; Smith, M. An assessment of prochlorperazine buccal for the prevention of nausea and vomiting during intravenous patient-controlled analgesia with morphine following abdominal hysterectomy. Eur. J. Anaesthesiol., 1999, 16(9), 638-645.
[79] Platonov, I.A. [The effect of neuroleptics on blood proteins during development of toxic cerebral edema-brain swelling]. Vopr. Med. Khim., 1995, 41(1), 27-29.
[80] Wolfe, S.; Zhang, C.; Johnston, B.D.; Kim, C.K. Synthesis of the stereoisomers of a novel antibacterial agent and interpretation of their relative activities in terms of a theoretical model of the penicillin receptor. Can. J. Chem., 1994, 72, 1066-1075.
[81] Kale, S.B.; Karale, B.K. Synthesis and characterization of some important indazolyl derivatives. J. Heterocycl. Chem., 2007, 44(2), 289-301.
[82] Aiello, A.; Fattorusso, E.; Luciano, P.; Menna, M.; Esposito, G.; Iuvone, T.; Pala, D. Conicaquinones A and B, two novel cytotoxic terpene quinones from the mediterranean ascidian Aplidium conicum. Eur. J. Org. Chem., 2003, 898-900.
[83] Ma, Y-T.; Huang, M-C.; Hsu, F-L.; Chang, H-F. Thiazinedione from Xanthium strumarium. Phytochemistry, 1998, 48, 1083-1085.
[84] Stoodley, R.J. Katritzky, A. R. Advances in Heterocyclic Chemistry., (1st ed. ), 1979,
[85] Cecchetti, V.; Calderone, V.; Tabarrini, O.; Sabatini, S.; Filipponi, E.; Testai, L.; Spogli, R.; Martinotti, E.; Fravolini, A. Highly potent 1,4-benzothiazine derivatives as K(ATP)-channel openers. J. Med. Chem., 2003, 46(17), 3670-3679.
[86] Matsuoka, H.; Ohi, N.; Mihara, M.; Suzuki, H.; Miyamoto, K.; Maruyama, N.; Tsuji, K.; Kato, N.; Akimoto, T.; Takeda, Y.; Yano, K.; Kuroki, T. Antirheumatic agents: Novel methotrexate derivatives bearing a benzoxazine or benzothiazine moiety. J. Med. Chem., 1997, 40(1), 105-111.
[87] Calderone, V.; Spogli, R.; Martelli, A.; Manfroni, G.; Testai, L.; Sabatini, S.; Tabarrini, O.; Cecchetti, V. Novel 1,4-benzothiazine derivatives as large conductance Ca2+-activated potassium channel openers. J. Med. Chem., 2008, 51(16), 5085-5092.
[88] Wang, Z.; Yuan, Y.; Chen, Y.; Sun, G.; Wu, X.; Zhang, S.; Han, C.; Wang, G.; Li, L.; Liu, G. Parallel solution-phase synthesis of 4H-benzo[1,4]thiazin-3-one and 1,1-dioxo-1,4-dihydro-2H-1lambda6-benzo[1,4]thiazin-3-one derivatives from 1,5-difluoro-2,4-dinitrobenzene. J. Comb. Chem., 2007, 9(4), 652-660.
[89] Cecchetti, V.; Calderone, V.; Tabarrini, O.; Sabatini, S.; Filipponi, E.; Testai, L.; Spogli, R.; Fravolini, A. Highly potent 1,4-benzothiazine derivatives as K(ATP)-channel openers. J. Med. Chem., 2005, 48, 6766.
[90] Marchetti, C.; Ulisse, S.; Bruscoli, S.; Russo, F.P.; Migliorati, G.; Schiaffella, F.; Cifone, M.G.; Riccardi, C.; Fringuelli, R. Induction of apoptosis by 1,4-benzothiazine analogs in mouse thymocytes. J. Pharmacol. Exp. Ther., 2002, 300(3), 1053-1062.
[91] Kaneko, T.; Clark, R.S.; Ohi, N.; Kawahara, T.; Akamatsu, H.; Ozaki, F.; Kamada, A.; Okano, K.; Yokohama, H.; Muramoto, K.; Ohkuro, M.; Takenaka, O.; Kobayashi, S. Inhibitors of adhesion molecules expression; the synthesis and pharmacological properties of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives. Chem. Pharm. Bull. (Tokyo), 2002, 50(7), 922-929.
[92] Kaneko, T.; Clark, R.S.; Ohi, N.; Ozaki, F.; Kawahara, T.; Kamada, A.; Okano, K.; Yokohama, H.; Ohkuro, M.; Muramoto, K.; Takenaka, O.; Kobayashi, S. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors. Chem. Pharm. Bull. (Tokyo), 2004, 52(6), 675-687.
[93] Chia, E.W.; Pearce, A.N.; Berridge, M.V.; Larsen, L.; Perry, N.B.; Sansom, C.E.; Godfrey, C.A.; Hanton, L.R.; Lu, G.L.; Walton, M.; Denny, W.A.; Webb, V.L.; Copp, B.R.; Harper, J.L. Synthesis and anti-inflammatory structure-activity relationships of thiazine-quinoline-quinones: inhibitors of the neutrophil respiratory burst in a model of acute gouty arthritis. Bioorg. Med. Chem., 2008, 16(21), 9432-9442.
[94] Barazarte, A.; Camacho, J.; Domínguez, J.; Lobo, G.; Gamboa, N.; Rodrigues, J.; Capparelli, M.V.; Álvarez-Larena, A.; Andujar, S.; Enriz, D.; Charris, J. Synthesis, antimalarial activity, structure-activity relationship analysis of thieno-[3,2-b]benzothiazine S,S-dioxide analogs. Bioorg. Med. Chem., 2008, 16(7), 3661-3674.
[95] Bakavoli, M.; Nikpour, M.; Rahimizadeh, M.; Saberi, M.R.; Sadeghian, H. Design and synthesis of pyrimido[4,5-b][1,4]benzothiazine derivatives, as potent 15-lipoxygenase inhibitors. Bioorg. Med. Chem., 2007, 15(5), 2120-2126.
[96] Rathore, B.S.; Kumar, M. Synthesis of 7-chloro-5-trifluoromethyl/7-fluoro/7-trifluoromethyl-4H-1,4-benzothiazines as antimicrobial agents. Bioorg. Med. Chem., 2006, 14(16), 5678-5682.
[97] Schiaffella, F.; Macchiarulo, A.; Milanese, L.; Vecchiarelli, A.; Fringuelli, R. Novel ketoconazole analogues based on the replacement of 2,4-dichlorophenyl group with 1,4-benzothiazine moiety: design, synthesis, and microbiological evaluation. Bioorg. Med. Chem., 2006, 14(15), 5196-5203.
[98] Fringuelli, R.; Schiaffella, F.; Bistoni, F.; Pitzurra, L.; Vecchiarelli, A. Azole derivatives of 1,4-benzothiazine as antifungal agents. Bioorg. Med. Chem., 1998, 6(1), 103-108.
[99] Sheibani, H.; Islami, M.R.; Hassanpour, A.; Hosseininasab, F.A. Nucleophilic substitution of 2,2′-disulfanediyldianiline by β-keto esters and 1,3-diketones in the presence of triethylamine. ARKIVOC, 2006, 15, 68-75.
[100] Sabatini, S.; Kaatz, G.W.; Rossolini, G.M.; Brandini, D.; Fravolini, A. From phenothiazine to 3-phenyl-1,4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump. J. Med. Chem., 2008, 51(14), 4321-4330.
[101] Miller, W.H.; Rouse, M.B.; Seefeld, M.A. Antibacterial agents. WO2006014580 A1, 2006.
[102] Miller, W.H.; Pendrak, I.; Seefeld, M.A. Antibacterial agents. WO 2006002047 A3, 2006.
[103] Hubschwerlen, C.; Surivet, J.P.; Acklin, C.Z Beta-aminoalcohol antibiotics. WO2006099884A1, 2006.
[104] Singh, R.; Argade, A.; Payan, D.G.; Clough, J.; Keim, H.; Sylvain, C.; Li, H.; Bhamidipati, S. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds. WO2004014382A1, 2004.
[105] Jiang, L.; He, Y.; An, J. 2-mercapto-ethylamine cyclized hypocrellin and preparation process and usage thereof. CN1266061A, 2002.
[106] Kaul, B.L.; Piastra, B.; Wolf, V. Pigments, the process of their manufacture and their use. EP 1046680A2, 2000.
[107] Bur, D.; Hubschwerlen, C.; Surivet, J.P.; Zumbrunn Acklin, C. New antibiotic derivatives. WO 2006126171A2, 2006.
[108] Ehara, T.; Hitomi, Y.; Konischi, K.; Masuya, K. Substituted piperidines as renin inhibitors. WO 2006125621A1, 2008.
[109] Badshah, S.L.; Ahmad, N.; Ur Rehman, A.; Khan, K.; Ullah, A.; Alsayari, A.; Muhsinah, A.B.; N Mabkhot, Y. Molecular docking and simulation of Zika virus NS3 helicase. BMC Chem, 2019, 13(1), 67-74.
[110] Denny, W.A.; Copp, B.R.; Pearce, A.N.; Berridge, M.V.; Harper, J.L.; Perry, N.B.; Larsen, L.; Godfrey, C.A. Anti-inflammatory compounds. WO 2006031134A1, 2006.
[111] Pierau, S.; Dale, G. Novel compounds having an anti-bacterial activity. WO 2006021448A1, 2006.
[112] Strobel, H.; Nemecek, C.; Lesuisse, D.; Ruf, S.; Guessregen, St.; Lebrun, A.; Ritter, K.; Malleron, J.L. Heterocycle -substituted cyclic urea derivatives, preparation thereof and pharmaceutical use thereof as kinase inhibitors. EP 1621539A1, 2006.
[113] Yuji, O.; Fumihiko, A.; Akihiko, M.; Satoru, U.; Tsuguo, I. Process for the preparation of (-)-1,4-benzothiazine-2-acetic acid derivatives. WO2000076995 A1, 2000.
[114] Cali, P.; Hjelmencrantz, A.; Naerum, L. Peptide deformylase inhibitors. WO 2005092872 A1 20051006, 2005.
[115] Molteni, V.; He, X.; He, Y.; Kreusch, A.; Nabakka, J.; Yang, K. Bicyclic compounds and compositions as pdf inhibitors. WO 2005011611 A2 20050210, 2005.
[116] Bhushan, L.B.; Bhushan, L.V.; Channaveerappa, B.A.; Shivaramayya, K.; Rajagopalan, R.; Ranjan, C. Bicyclic compounds, process for their preparation and pharmaceutical compositions containing them. WO9920614 A1, 1999.
[117] Liu, X.H.; Cui, P.; Song, B.A.; Bhadury, P.S.; Zhu, H.L.; Wang, S.F. Synthesis, structure and antibacterial activity of novel 1-(5-substituted-3-substituted-4,5-dihydropyrazol-1-yl)ethanone oxime ester derivatives. Bioorg. Med. Chem., 2008, 16(7), 4075-4082.
[118] Tanitame, A.; Oyamada, Y.; Ofuji, K.; Kyoya, Y.; Suzuki, K.; Ito, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J. Design, synthesis and structure-activity relationship studies of novel indazole analogues as DNA gyrase inhibitors with Gram-positive antibacterial activity. Bioorg. Med. Chem. Lett., 2004, 14(11), 2857-2862.
[119] Velaparthi, S.; Brunsteiner, M.; Uddin, R.; Wan, B.; Franzblau, S.G.; Petukhov, P.A. 5-tert-butyl-N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[d]isoxazole-3-carboxamide derivatives as novel potent inhibitors of Mycobacterium tuberculosis pantothenate synthetase: initiating a quest for new antitubercular drugs. J. Med. Chem., 2008, 51(7), 1999-2002.
[120] Magedov, I.V.; Manpadi, M.; Slambrouck, S.V.; Steelant, W.F.; Rozhkova, E.; Przheval’skii, N.M.; Rogelj, S.; Kornienko, A. Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllotoxin analogues accessible by a one-step multicomponent synthesis. J. Med. Chem., 2007, 50(21), 5183-5192.
[121] Rovnyak, G.C.; Millonig, R.C.; Schwartz, J.; Shu, V. Synthesis and antiinflammatory activity of hexahydrothiopyrano[4,3-c]pyrazoles and related analogues. J. Med. Chem., 1982, 25(12), 1482-1488.
[122] Wächter, G.A.; Hartmann, R.W.; Sergejew, T.; Grün, G.L.; Ledergerber, D. Tetrahydronaphthalenes: influence of heterocyclic substituents on inhibition of steroid enzymes P450 arom and P450 17. J. Med. Chem., 1996, 39(4), 834-841.
[123] Armenise, D.; Trapani, G.; Arrivo, V.; Morlacchi, F. Preparation of potentially bioactive aza and thiaza polycyclic compounds containing a bridgehead nitrogen atom. Synthesis of pyrrolo[1,2,3-de]-1,4-benzothiazine derivatives. J. Heterocycl. Chem., 1990, 27, 1521-1525.
[124] Vicentini, C.B.; Mares, D.; Tartari, A.; Manfrini, M.; Forlani, G. Synthesis of pyrazole derivatives and their evaluation as photosynthetic electron transport inhibitors. J. Agric. Food Chem., 2004, 52(7), 1898-1906.
[125] Waldrep, T.W.; Beck, J.R.; Lynch, M.P.; Wright, F.L. Synthesis and herbicidal activity of 1-aryl-5-halo and 1-aryl-5- (trifluoromethyl)-1H-pyrazole-4-carboxamides. J. Agric. Food Chem., 1990, 38, 541-544.
[126] Minakata, S.; Hamada, T.; Komatsu, M.; Tsuboi, H.; Kikuta, H.; Ohshiro, Y. Synthesis and Biological Activity of 1H-Pyrrolo[2,3-b]pyridine Derivatives: Correlation between Inhibitory Activity against the Fungus Causing Rice Blast and Ionization Potential. J. Agric. Food Chem., 1997, 45, 2345-2348.
[127] Vicentini, C.B.; Romagnoli, C.; Andreotti, E.; Mares, D. Synthetic pyrazole derivatives as growth inhibitors of some phytopathogenic fungi. J. Agric. Food Chem., 2007, 55(25), 10331-10338.
[128] Li, Y.; Zhang, H.Q.; Liu, J.; Yang, X.P.; Liu, Z.J. Stereoselective synthesis and antifungal activities of (E)-alpha-(methoxyimino)benzeneacetate derivatives containing 1,3,5-substituted pyrazole ring. J. Agric. Food Chem., 2006, 54(10), 3636-3640.
[129] Mashkovskii, M.D. Lekarstvennye sredstva (Drugs), 2002, 1, 253-263.
[130] a)Wijtmans, R.; Vink, M.K.S.; Schoemaker, H.E.; van Delft, F.L.; Blaauw, R.H.; Rutjes, F.P.J.T. Biological Relevance and Synthesis of C-Substituted Morpholine Derivatives. Synthesis., 2004, 641-662. and references therein. Wilkinson, M. C. Asymmetric synthesis of an aminomethyl morpholine via double allylic substitution. Tetrahedron Lett., 2005, 46, 4773.b)Lanman, B.A.; Myers, A.G. Efficient, stereoselective synthesis of trans-2,5-disubstituted morpholines. Org. Lett., 2004, 6(6), 1045-1047.
[131] Abramova, T.V.; Bakharev, P.A.; Vasilyeva, S.V.; Silnikov, V.N. Synthesis of morpholine nucleoside triphosphates. Tetrahedron Lett., 2004, 45, 4361-4364.
[132] Ito, K.; Imahayashi, Y.; Kuroda, T.; Eno, S.; Saito, B.; Katsuki, T. Palladium-catalyzed asymmetric tandem allylic substitution using chiral 2-(phosphinophenyl)pyridine ligand. Tetrahedron Lett., 2004, 45, 7277-7281.
[133] Clark, S.M.; Osborn, H.M.I. Synthetic entry to functionalised morpholines and [1,4]-oxazepanes via reductive amination reactions of carbohydrate derived dialdehydes. Tetrahedron Asymmetry, 2004, 15, 3643-3652.
[134] Brenner, E.; Baldwin, R.M.; Tamagnan, G. Asymmetric synthesis of (+)-(S,S)-reboxetine via a new (S)-2-(hydroxymethyl)morpholine preparation. Org. Lett., 2005, 7(5), 937-939.
[135] Abdel-Jalil, R.J.; Ali Shah, S.T.; Khan, K.M.; Voelter, W. A novel route towards the synthesis of stereospecific n-substituted chiral morpholines. Lett. Org. Chem., 2005, 2, 306-308.
[136] Pommer, E-H. Chemical structure-fungicidal activity relationships in substituted morpholines. Pestic. Sci., 1984, 15, 285-295.
[137] Wong, E.H.F.; Sonders, M.S.; Amara, S.G.; Tinholt, P.M.; Piercey, M.F.P.; Hoffmann, W.P.; Hyslop, D.K.; Franklin, S.; Porsolt, R.D.; Bonsignori, A.; Carfagna, N.; McArthur, R.A. Reboxetine: A pharmacologically potent, selective, and specific norepinephrine reuptake inhibitor. Biol. Psychiatry, 2000, 47(9), 818-829.
[138] Dieckmann, H.; Stockmaier, M.; Kreuzig, R.; Bahadir, M.F. Simultaneous determination of fenpropimorph and the corresponding metabolite fenpropimorphic acid in soil. J. Anal. Chem., 1993, 345, 784-786.
[139] Kaiho, T.; Kusano, K.; Taniyama, T. Benzyl alcohol derivatives or salts thereof. WO 2005023235 A1, 2005.
[140] Bridger, G. J.; McEachern, E. J.; Skerlj, R.; Schols, D. Chemokine receptor binding heterocyclic compounds with enhanced efficacy. WO2004093817A2, 2004.
[141] Horiuchi, Y.; Sone, T. Jpn. Kokai Tokkyo Koho JP 2004277337 A2, Oct 7, (2004). Chem. Abstr., 2004, 141325708
[142] Habashita, H.; Kokubo, M.; Shibayama, S.; Tada, H.; Tanihiro, T. Nitrogen-containing heterocyclic compound and pharmaceutical use thereof. WO 2004052862A1, 2004.
[143] Sugihara, Y.; Iizawa, Y.; Baba, M. Cyclic amine compound, process for producing the same, and use. WO 2004026833A1, 2004.
[144] Singh, N.; Sijwali, P.S.; Pandey, K.C.; Rosenthal, P.J. Plasmodium falciparum: Biochemical characterization of the cysteine protease falcipain-2′. Exp. Parasitol., 2006, 112(3), 187-192.
[145] Hirokawa, Y.; Kinoshita, H.; Tanaka, T.; Nakamura, T.; Fujimoto, K.; Kashimoto, S.; Kojima, T.; Kato, S. Pleuromutilin derivatives having a purine ring. Part 3: Synthesis and antibacterial activity of novel compounds possessing a piperazine ring spacer. Bioorg. Med. Chem. Lett., 2009, 19(1), 175-179.
[146] Fung, H.B.; Kirschenbaum, H.L.; Ojofeitimi, B.O. Linezolid: an oxazolidinone antimicrobial agent. Clin. Ther., 2001, 23(3), 356-391.
[147] Takeuchi, H.; Yatsugi, S.; Hatanaka, K.; Nakato, K.; Hattori, H.; Sonoda, R.; Koshiya, K.; Fujii, M.; Yamaguchi, T. Pharmacological studies on YM992, a novel antidepressant with selective serotonin re-uptake inhibitory and 5-HT2A receptor antagonistic activity. Eur. J. Pharmacol., 1997, 329(1), 27-35.
[148] a)Szulawska, A.; Arkusinska, J.; Czyz, M. Accumulation of gamma-globin mRNA and induction of irreversible erythroid differentiation after treatment of CML cell line K562 with new doxorubicin derivatives. Biochem. Pharmacol., 2007, 73(2), 175-184.
b)Jakubowska, J.; Wasowska-Lukawska, M.; Czyz, M. STI571 and morpholine derivative of doxorubicin collaborate in inhibition of K562 cell proliferation by inducing differentiation and mitochondrial pathway of apoptosis. Eur. J. Pharmacol., 2008, 596(1-3), 41-49.
[149] Mesropyan, E.G.; Galstyan, A.S.; Avetisyan, A.A. Syntheses on the basis of 4-(Oxiran-2-ylmethyl)morpholine. Russ. J. Org. Chem., 2006, 42(12), 1845-1847.
[150] Daryaee, F.; Kobarfard, F.; Khalaj, A.; Farnia, P. Synthesis and evaluation of in vitro anti-tuberculosis activity of N-substituted glycolamides. Eur. J. Med. Chem., 2009, 44(1), 289-295.
[151] Dorsey, B.D.; Levin, R.B.; McDaniel, S.L.; Vacca, J.P.; Guare, J.P.; Darke, P.L.; Zugay, J.A.; Emini, E.A.; Schleif, W.A.; Quintero, J.C.; Anderson, P.S.; Huff, J.R.L. L-735,524: the design of a potent and orally bioavailable HIV protease inhibitor. J. Med. Chem., 1994, 37(21), 3443-3451.
[152] Thomas, R.C.; Cleek, G.J.; Hutchinson, D.K.; Yamada, H. Oxazolidinone antibacterial agent with tricyclic substituents. U.S. Patent 5, 1999.
[153] Davies, D.T.; Markwell, R.E.; Pearson, N.D.; Takle, A.K. Quinoline derivatives as antibacterials. U.S. Patent 6,911,442, 2005.
[154] Erskine, S.G.; Gwynn, M.; Pearson, N.D.; Wilding, E.I. Compounds and methods for the treatment of neoplastic disease. U.S. Patent 6, 803, 369, 2004.
[155] Naylor, A.; Judd, D.B.; Lloyd, J.E.; Scopes, D.I.C.; Hayes, A.G.; Birch, P.J. A potent new class of kappa-receptor agonist: 4-substituted 1-(arylacetyl)-2-[(dialkylamino)methyl]piperazines. J. Med. Chem., 1993, 36(15), 2075-2083.
[156] Cunico, W.; Gomes, C.R.B.; Facchinetti, V.; Moreth, M.; Penido, C.; Henriques, M.G.; Varotti, F.P.; Krettli, L.G.; Krettli, A.U.; da Silva, F.S.; Caffarena, E.R.; de Magalhães, C.S. Synthesis, antimalarial evaluation and molecular modeling studies of hydroxyethylpiperazines, potential aspartyl protease inhibitors, part 2. Eur. J. Med. Chem., 2009, 44(9), 3816-3820.
[157] Ananda Kumar, C.S.; Benaka Prasad, S.B.; Vinaya, K.; Chandrappa, S.; Thimmegowda, N.R.; Kumar, Y.C.; Swarup, S.; Rangappa, K.S. Synthesis and in vitro antiproliferative activity of novel 1-benzhydrylpiperazine derivatives against human cancer cell lines. Eur. J. Med. Chem., 2009, 44(3), 1223-1229.
[158] Drizin, I.; Gregg, R.J.; Scanio, M.J.; Shi, L.; Gross, M.F.; Atkinson, R.N.; Thomas, J.B.; Johnson, M.S.; Carroll, W.A.; Marron, B.E.; Chapman, M.L.; Liu, D.; Krambis, M.J.; Shieh, C.C.; Zhang, X.; Hernandez, G.; Gauvin, D.M.; Mikusa, J.P.; Zhu, C.Z.; Joshi, S.; Honore, P.; Marsh, K.C.; Roeloffs, R.; Werness, S.; Krafte, D.S.; Jarvis, M.F.; Faltynek, C.R.; Kort, M.E. Discovery of potent furan piperazine sodium channel blockers for treatment of neuropathic pain. Bioorg. Med. Chem., 2008, 16(12), 6379-6386.
[159] Shami, P.J.; Saavedra, J.E.; Bonifant, C.L.; Chu, J.; Udupi, V.; Malaviya, S.; Carr, B.I.; Kar, S.; Wang, M.; Jia, L.; Ji, X.; Keefer, L.K. Antitumor activity of JS-K [O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] and related O2-aryl diazeniumdiolates in vitro and in vivo. J. Med. Chem., 2006, 49(14), 4356-4366.
[160] Li, J.B.; Xia, L.; Wu, B.; Wang, T.; Jiang, Z.Z. Design, synthesis and biological estimation of 1-(benzoxazole-2-yl)piperazine and 4-(benzoxazole-2-yl)piperidine derivatives as potential α1-AR antagonists. Chin. Chem. Lett., 2008, 19, 1193-1195.
[161] Masson, M.; Holappa, J.; Hjalmarsdottir, M.; Runarsson, O.V.; Nevalainen, T.; Jarvinen, T. Antimicrobial activity of piperazine derivatives of chitosan. Carbohydr. Polym., 2008, 74, 566-571.
[162] Sharma, P.K. Antifungal, Antibacterial and Antioxidant activities of substituted Morpholinylbenzothiazine. Der Pharmacia Lettre., 2016, 8(11), 140-142.
[163] Sharma, P.K. Antibacterial, Antifungal and Antioxidant activities of substituted pyrazolylbenzothiazines. Der Pharmacia Lettre, 2016, 8(11), 79-82.
[164] Sharma, P.K. Antibacterial, Antifungal and Antioxidant activities of substituted 4H-1,4-benzothiazines. Pharma Chem., 2016, 8(11), 156-159.
[165] Sharma, P.K. Antibacterial and Antifungal activity of Piperazinylbenzothiazine. Pharma Chem., 2016, 8(5), 191-193.
[166] Sharma, P.K. Morpholinylbenzothiazine consider as bioactive compound. Der Pharmacia Lettre, 2016, 8(4), 86-90.
[167] Sharma, P.K. Synthesis of Bioactive substituted pyrazolylbenzothiazinones. Res. Chem. Intermed., 2015, 41(9), 6141-6148.
[168] Sharma, P.K. Synthesis and Antimicrobial Activity of Morpholinyl/Piperazinylbenzothiazines. Med. Chem. Res., 2012, 21(8), 2072-2078.
[169] Sharma, P.K. Synthesis and Antimicrobial activity of Structurally flexible Heterocycles with the 1,4-Thiazine Heterosystem. Res. Chem. Intermed., 2011, 37(8), 1103-1111.
[170] Sharma, P.K. Synthesis and Antimicrobial activity of 2H-pyrimido [2,1-b]benzothiazol-2-ones. Res. Chem. Intermed., 2010, 36(8), 985-993.
[171] Sharma, P.K. One-pot, Multicomponent Sequential Synthesis of Benzothiazoloquinazolinones. Synth. Commun., 2010, 40(16), 2347-2352.
[172] Sharma, P.K. N-bridged bioactive heterocycles: Synthesis of 2-methyl-4H-pyrimido [2, 1-b] benzothiazol-4-ones. Res. Chem. Intermed., 2009, 35, 35-41.
[173] Sharma, P.K. Regioselective one-pot synthesis of 5-chloro-3-methyl-8-trifluoromethyl-4H-1,4-benzothiazines. Heterocycl. Commun., 2019, 15(2), 127-133.
[174] Sharma, P.K. Synthesis of 2,4-diaryl-2, 3-dihydro-1, 5-benzothiazepines. Heterocycl. Commun., 2008, 14(3), 155-160.
[175] Sharma, P.K. Synthesis, spectral, energetic and reactivity properties of phenothiazines: Experimental and computational approach. J. Chem. Pharm. Res., 2015, 7(11), 462-473.
[176] Chattopadhyay, S.K. Recent advancement in the synthesis of 1,2- and 2,1-benzothiazines. Synth. Commun., 2018, 48(24), 3033-3078.
[177] Makhova, N.N. Progress in the chemistry of nitrogen-, oxygen- and sulfur-containing heterocyclic systems. Russ. Chem. Rev., 2020, 89(1), 55.
[178] Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[179] Jampilek, J. Heterocycles in Medicinal Chemistry. Molecules, 2019, 24(21), 3839.